Isotopic signatures of nitrogen, argon, and xenon have been determined in separated millimeter-sized pockets of shock-melted glass in a recently identified lithology of the meteorite Zagami, a shergottite. The ratio of nitrogen-15 to nitrogen-14, which is at least 282 per mil larger than the terrestrial value, the ratio of xenon-129 to xenon-132 = 2.40, and the argon isotopic abundances match the signatures previously observed in the glassy lithology of the Antarctic shergottite EETA 79001. These results show that the signatures in EETA 79001 are not unique but characterize the trapped gas component in shock-melted glass of shergottites. The isotopic and elemental ratios of nitrogen, argon, and xenon closely resemble the Viking spacecraft data for the martian atmosphere and provide compelling evidence for a martian origin of the two shergottites and, by extension, of the meteorites in the shergottites-nakhlites-chassignites (SNC) group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.