This paper presents a study of the absorption of electromagnetic power that results from the interaction of electromagnetic waves and cylindrical bumps or trenches on flat conducting surfaces. Configurations are characterized by means of adequately selected dimensionless variables and parameters so that applicability to mathematically equivalent (but physically diverse) systems can be achieved easily. Electromagnetic fields and absorption increments caused by such surface defects are evaluated by means of a high-order integral equation method which resolves fine details of the field near the surface, and which was validated by fully analytical approaches in a range of computationally challenging cases. The computational method is also applied to problems concerning bumps and trenches on imperfect conducting planes for which analytical solutions are not available. Typically, we find that absorption is enhanced by the presence of the defects considered, although, interestingly, absorption can also be significantly reduced in some cases-such as, e.g., in the case of a trench on a conducting plane where the incident electric field is perpendicular to the plane. Additionally, it is observed that, for some small-skin-depths large-wavelengths, the absorption increment is proportional to the increase in surface area. Significant physical insight is obtained on the heating that results from various types of electromagnetic incident fields. V C 2014 AIP Publishing LLC. [http://dx.
Two plasma diagnostics in ITER will use cube-corner reflectors (CCR): poloidal polarimetry and toroidal interferometry/polarimetry. The multichannel poloidal polarimetry system is planned to operate at a wavelength of 118.8μm. The multichannel toroidal interferometry/polarimetry system is based on a CO2 laser operating at wavelengths of 10.6 and 9.27μm. The long term sputtering by charge exchange atoms and/or deposition of carbon-based (or beryllium-based) contaminant layers can affect the optical properties of the CCR. The role of both these potentially deleterious effects on the CCR operation is analyzed in this article, taking into account the probing beam wavelength and the CCR locations. The conclusion is that for the intended use of a CCR in the poloidal polarimetry at 118μm neither erosion nor deposition should pose a problem. On the other hand, in the toroidal interferometry/polarimetry system operating at 10μm, care must be taken to reduce the charge exchange atom flux and it is likely that deposition will occur and could have deleterious effects especially on the polarization properties of the reflected radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.