[1] We present the results of an investigation of the sequence of events from the Sun to the Earth that ultimately led to the 88 major geomagnetic storms (defined by minimum Dst À100 nT) that occurred during 1996-2005. The results are achieved through cooperative efforts that originated at the Living with a Star (LWS) Coordinated DataAnalysis Workshop (CDAW) held at George Mason University in March 2005. On the basis of careful examination of the complete array of solar and in situ solar wind observations, we have identified and characterized, for each major geomagnetic storm, the overall solar-interplanetary (solar-IP) source type, the time, velocity, and angular width of the source coronal mass ejection (CME), the type and heliographic location of the solar source region, the structure of the transient solar wind flow with the storm-driving component specified, the arrival time of shock/disturbance, and the start and ending times of the corresponding IP CME (ICME). The storm-driving component, which possesses a prolonged and enhanced southward magnetic field (B s ), may be an ICME, the sheath of shocked plasma (SH) upstream of an ICME, a corotating interaction region (CIR), or a combination of these structures. We classify the Solar-IP sources into three broad types: (1) S-type, in which the storm is associated with a single ICME and a single CME at the Sun; (2) M-type, in which the storm is associated with a complex solar wind flow produced by multiple interacting ICMEs arising from multiple halo CMEs launched from the Sun in a short period; (3) C-type, in which the storm is associated with a CIR formed at the leading edge of a high-speed stream originating from a solar coronal hole (CH). For the 88 major storms, the S-type, M-type, and C-type events number 53 (60%), 24 (27%), and 11 (13%), respectively. For the 85 events for which the surface source regions could be investigated, 54 (63%) of the storms originated in solar active regions, 11 (13%) in quiet Sun regions associated with quiescent filaments or filament channels, and 11 (13%) were associated with coronal holes. Remarkably, nine (11%) CME-driven events showed no sign of eruptive features on the surface or in the low corona (e.g., no flare, no coronal dimming, and no loop arcade, etc.), even though all the available solar observations in a suitable time period were carefully examined. Thus while it is generally true that a major geomagnetic storm is more likely to be driven by a frontside fast halo CME associated with a major flare, our study indicates a broad distribution of source properties. The implications of the results for space weather forecasting are briefly discussed.
Abstract. EIT waves and extreme-ultraviolet (EUV) dimmings attract particular attention as they frequently accompany Coronal Mass Ejections (CMEs). We present several examples of EIT waves and EUV dimmings with particular morphologies previously unreported in the literature. We report for the first time an EIT wave in the Fe XV (284 Å) bandpass of the SOHO/EIT instrument. The observations of this event confirm previous results that an EIT wave is a purely coronal phenomenon that does not propagate in the transition region plasma. Two EIT wave events initiated close to the solar limb are investigated, thus permitting us to see simultaneously the wave and the magnetic configuration of the CME. These observations suggest that EIT wave can be regarded as a bimodal phenomenon. The wave mode represents a wave-like propagating disturbance. Its characteristic features are propagation of a bright front to large distances from dimming sites and quasi-circular appearance. The eruptive mode is the propagation of a dimming and of an EIT wave as a result of successive opening of magnetic field lines during the CME lift-off. It can be identified by noting the expansion of a dimming and the appearance of another dimming ahead of a bright front. We reveal the temperature structure of the EUV dimmings that appeared after the classical EIT wave event on May 12, 1997, using differential emission measure (DEM) maps obtained through the analysis of images in four EIT bandpasses. The part of the CME mass contained in the low corona observed by the EIT is estimated to be about 10 15 g. It appears that around 50% of this total CME mass in the low corona is contained outside of transient coronal holes. It is shown that at present it is difficult to reconcile all the observational facts into a coherent physical model. In particular, the physical nature of the wave mode of EIT waves remains elusive.
Seventy‐nine major geomagnetic storms (minimum Dst ≤ −100 nT) observed in 1996 to 2004 were the focus of a “Living with a Star” Coordinated Data Analysis Workshop (CDAW) in March 2005. In nine cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection‐related material (interplanetary coronal mass ejections (ICMEs)). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996–2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst ∼ −40 nT but is subject to a prominent seasonal variation of ∼40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction toward or away from the Sun. The O'Brien and McPherron (2000) equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR‐associated storms by Dst ∼ 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996–2004 occurred during a period of less than three solar rotations in September to November 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR‐storm strength found in our sample of events, plus additional 23 probable CIR‐associated Dst ≤ −100 nT storms in 1972–1995, is (Dst = −161 nT). This is consistent with the maximum storm strength (Dst ∼ −180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind electric fields associated with CIRs. This suggests that CIRs alone are unlikely to generate geomagnetic storms that exceed these levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.