Ligands, Lewis bases that coordinate to the metal center in a complex, can completely change the catalytic behavior of the metal center. In this Account, we summarize new reactions enabled by a single class of ligands, phosphine-sulfonates (ortho-phosphinobenzenesulfonates). Using their palladium complexes, we have developed four unusual reactions, and three of these have produced novel types of polymers. In one case, we have produced linear high-molecular weight polyethylene, a type of polymer that group 10 metal catalysts do not typically produce. Secondly, complexes using these ligands catalyzed the formation of linear poly(ethylene-co-polar vinyl monomers). Before the use of phosphine-sulfonate catalysts, researchers could only produce ethylene/polar monomer copolymers that have different branched structures rather than linear ones, depending on whether the polymers were produced by a radical polymerization or a group 10 metal catalyzed coordination polymerization. Thirdly, these phosphine-sulfonate catalysts produced nonalternating linear poly(ethylene-co-carbon monoxide). Radical polymerization gives ethylene-rich branched ethylene/CO copolymers copolymers. Prior to the use of phosphine-sulfonates, all of the metal catalyzed processes gave completely alternating ethylene/carbon monoxide copolymers. Finally, we produced poly(polar vinyl monomer-alt-carbon monoxide), a copolymerization of common polar monomers with carbon monoxide that had not been previously reported. Although researchers have often used symmetrical bidentate ligands such as diimines for the polymerization catalysis, phosphine-sulfonates are unsymmetrical, containing two nonequivalent donor units, a neutral phosphine, and an anionic sulfonate. We discuss the features that make this ligand unique. In order to understand all of the new reactions facilitated by this special ligand, we discuss both the steric effect of the bulky phosphines and electronic effects. We provide a unified interpretation of the unique reactivity by considering of the net charge and the enhanced back donation in the phosphine-sulfonate complexes.
Linear polyethylene propagation starting from Pd phosphine-sulfonate complexes, Pd(CH(3))(L)(Ar(2)PC(6)H(4)SO(3)) (L = 2,6-lutidine, Ar = o-MeOC(6)H(4) (2a) and L = pyridine, Ar = Ph (2b)), was studied both experimentally and theoretically. Experimentally, highly linear polyethylene was obtained with Pd(CH(3))(L)(Ar(2)PC(6)H(4)SO(3)) complexes 2a and 2b. Formation of a long alkyl-substituted palladium complex (3) was detected as a result of ethylene oligomerization on a palladium center starting from methylpalladium complex. Additionally, well-defined ethyl and propyl complexes (6(Et) and 6(Pr)) were synthesized as stable n-alkyl palladium complexes. In spite of the existence of beta-hydrogens, the beta-hydride elimination to give 1-alkenes was very slow or negligible in all cases. On the other hand, isomerization of 1-hexene in the presence of a methylpalladium/phosphine-sulfonate complex 2a indicated that this catalyst system actually undergoes beta-hydride elimination and reinsertion to release internal alkenes. On the theoretical side, the relative energies were calculated for intermediates and transition states for chain-growth, chain-walking, and chain-transfer on the basis of the starting model complex Pd(n-C(3)H(7))(pyridine)(o-Me(2)PC(6)H(4)SO(3)) (8). First, cis/trans isomerization process via the Berry's pseudorotation was proposed for the Pd/phosphine-sulfonate system. The second oxygen atom of sulfonate group is involved in the isomerization process as the associative ligand, which is one of the most unique natures of the sulfonate group. Chain propagation was suggested to take place from the less stable alkylPd(ethylene) complex 10' with the TS of 27.4/27.7 ((E+ZPC)/G) kcal/mol. Possible beta-hydride elimination was suggested to occur under low concentration of ethylene: the highest-energy transition state to override for beta-hydride elimination was either >37.4/25.3 kcal/mol (TS(9-12)) or 29.1/27.4 kcal/mol (TS(8'-9') to reach 12'). The ethylene insertion to the iso-alkylpalladium species (14') is allowed via a TS of 28.6/29.1 kcal/mol (TS(14'-15')), slightly higher in energy than that for the normal-alkylpalladium species (TS(10'-11')). Easy chain transfer was suggested to proceed from the more stable PdH(olefin) complex 12' if beta-hydride elimination to 12' does take place. Thus, the production of linear polyethylene with high molecular weight under ethylene pressure suggests that the cis and trans PdH(alkene)(phosphine-sulfonate) complexes (12 and 12') are merely accessible in the presence of excess amount of ethylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.