We propose a new type of long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of quantum wires (QWires) layers of InAs/InGaAsP grown on InP(001) and dielectrics Bragg mirrors, in order to control the in plane polarization of output power.QWires and quantum wells growth are performed by molecular beam epitaxy. QWires present a strong photoluminescence dependence to the polarization in contrast to the quantum wells, a polarization rate of 33% is measured. The optically pumped VCSEL is fabricated by metallic bonding, which allows the deposition of two dielectrics Bragg mirrors. The VCSEL with an active region based on InGaAs/InGaAsP quantum wells exhibits a lasing emission at 1.578 µm at room temperature under continuous wave operation. The VCSEL with an active region based on quantum wires shows a luminescence at 1.53 µm strongly polarized along the direction [110] which is promising for the stabilization of in plane polarization of VCSEL
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.