Thermalhydraulic analyses using sub-channel codes (e.g. ASSERT-PV) are performed as a support tool to evaluate safety margins and the key parameters. Advanced fuels have recently attracted the international community's interest to improve safety margins during normal operation and accident scenarios by utilizing special coatings and barriers in a heterogeneous, multi-region, multi-coating, multi-clad annular fuel. In addition, advanced fuels improve the performance characteristics such as a higher burnup and better uranium utilization. Therefore, there is a need to understand the implications of such advanced unconventional fuels for the landscape of the Canadian nuclear industry and Canadian policy for energy development. In this work, sub-channel thermalhydraulic analysis of a PWR-SMR core is performed using ASSERT-PV. A benchmark of a 17x17 fuel assembly with conventional fuel elements in comparison to PWR-SMR specification was conducted. The advanced fuel element system is also investigated and compared with the conventional one. The results indicated that the advanced fuel achieves a significant reduction in fuel element temperature by 19%. In addition, the results revealed that the proposed advanced fuel could achieve an MCHFR 16% higher than the conventional fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.