On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts or in the tidal disruption of a star. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.
We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 < z < 3.6, the largest sample of GRB host spectra available to date. Most of our GRBs were detected by Swift and 76% are at 0.5 < z < 2.5 with a median z med ∼ 1.6. Based on Balmer and/or forbidden lines of oxygen, nitrogen, and neon, we measure systemic redshifts, star formation rates (SFR), visual attenuations (A V ), oxygen abundances (12 + log(O/H)), and emission-line widths (σ). We study GRB hosts up to z ∼ 3.5 and find a strong change in their typical physical properties with redshift. The median SFR of our GRB hosts increases from SFR med ∼ 0.6 M yr −1 atO ] at higher redshifts leads to an increasing distance of GRB-selected galaxies to the locus of local galaxies in the Baldwin-Phillips-Terlevich diagram. There is weak evidence for a redshift evolution in A V and σ, with the highest values seen at z ∼ 1.5 (A V ) or z ∼ 2 (σ). Oxygen abundances of the galaxies are distributed between 12 + log(O/H) = 7.9 and 12 + log(O/H) = 9.0 with a median 12 + log(O/H) med ∼ 8.5. The fraction of GRB-selected galaxies with super-solar metallicities is ∼20% at z < 1 in the adopted metallicity scale. This is significantly less than the fraction of total star formation in similar galaxies, illustrating that GRBs are scarce in high metallicity environments. At z ∼ 3, sensitivity limits us to probing only the most luminous GRB hosts for which we derive metallicities of Z 0.5 Z . Together with a high incidence of Z ∼ 0.5 Z galaxies at z ∼ 1.5, this indicates that a metallicity dependence at low redshift will not be dominant at z ∼ 3. Significant correlations exist between the hosts' physical properties. Oxygen abundance, for example, relates to A V (12 + log(O/H) ∝ 0.17 · A V ), line width (12 + log(O/H) ∝ σ 0.6 ), and SFR (12 + log(O/H) ∝ SFR 0.2 ). In the last two cases, the normalization of the relations shift to lower metallicities at z > 2 by ∼0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments.
Context. The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe. Until recently, however, the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows, biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A GRB V 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry, and location of the absorbing dust of these poorly-explored host galaxies, and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line and galaxy-integrated characteristics such as the host's stellar mass, luminosity, color-excess, and star-formation rate. Results. For the eight afterglows considered in this study, we report for the first time the redshift of GRB 081109 (z = 0.9787±0.0005), and the visual extinction towards GRBs 081109 (A GRB V = 3.4 +0.4 −0.3 mag) and 100621A (A GRB V = 3.8 ± 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs, there is a strong anti-correlation between the afterglow's metal-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder ( (R − K) AB ∼ 1.6 mag), more luminous ( L ∼ 0.9 L * ), and massive ( log M * [M ] ∼ 9.8) than the hosts of optically-bright events. Hence, we probe a different galaxy population, suggesting that previous host samples miss most of the massive and metal-rich members. This also indicates that the dust along the sight-line is often related to host properties, and thus probably located in the diffuse ISM or interstellar clouds and not in the immediate GRB environment. Some of the hosts in our sample, are blue, young, or of low stellar mass illustrating that even apparently non-extinguished galaxies possess very dusty sight-lines owing to a patchy dust distribution. Conclusions. The afterglows and host galaxies of the dustiest GRBs provide evidence of a complex dust geometry in star-forming galaxies. In addition, they establish a population of luminous, massive, and correspondingly chemically evolved GRB hosts. This suggests that GRBs trace the global star-formation rate better than studies based on optically selected host samples indicate, and that the previously claimed deficiency of high-mass hosts was at least partially a selection effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.