On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
We present the COSMOS2015 a catalog which contains precise photometric redshifts and stellar masses for more than half a million objects over the 2deg 2 COSMOS field. Including new Y JHK s images from the UltraVISTA-DR2 survey, Y -band from Subaru/Hyper-Suprime-Cam and infrared data from the Spitzer Large Area Survey with the Hyper-Suprime-Cam Spitzer legacy program, this near-infraredselected catalog is highly optimized for the study of galaxy evolution and environments in the early Universe. To maximise catalog completeness for bluer objects and at higher redshifts, objects have been detected on a χ 2 sum of the Y JHK s and z ++ images. The catalog contains ∼ 6 × 10 5 objects in the 1.5 deg 2 UltraVISTA-DR2 region, and ∼ 1.5 × 10 5 objects are detected in the "ultra-deep stripes" (0.62 deg 2 ) at K s ≤ 24.7 (3σ, 3 , AB magnitude). Through a comparison with the zCOSMOSbright spectroscopic redshifts, we measure a photometric redshift precision of σ ∆z/(1+zs) = 0.007 and a catastrophic failure fraction of η = 0.5%. At 3 < z < 6, using the unique database of spectroscopic redshifts in COSMOS, we find σ ∆z/(1+zs) = 0.021 and η = 13.2%. The deepest regions reach a 90% completeness limit of 10 10 M to z = 4. Detailed comparisons of the color distributions, number counts, and clustering show excellent agreement with the literature in the same mass ranges. COSMOS2015 represents a unique, publicly available, valuable resource with which to investigate the evolution of galaxies within their environment back to the earliest stages of the history of the Universe. The COSMOS2015 catalog is distributed via anonymous ftp b and through the usual astronomical archive systems (CDS, ESO, IRSA).
We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95 675 galaxies in the COSMOS/UltraVISTA field. Sources have been selected from the DR1 UltraVISTA K s -band imaging which covers a unique combination of a wide area (1.62 deg 2 ), to a significant depth (K s,tot = 23.4, 90% completeness). The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10% and 1% of its current value at z ∼ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing as ρ star ∝ (1 + z) −4.7±0.4 since z = 3.5, whereas the mass density of star-forming galaxies increases as ρ star ∝ (1 + z) −2.3±0.2 . At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a nonzero population of quiescent galaxies persists to z = 4. Comparisons of the K s -selected star-forming galaxy SMFs to UV-selected SMFs at 2.5 < z < 4 show reasonable agreement and suggests UV-selected samples are representative of the majority of the stellar mass density at z > 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with Log(M * /M ⊙ ) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0(3.5), whereas those with Log(M * /M ⊙ ) = 10.5 have grown by > 1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties on the SMFs and find that those from photo-z templates, SPS modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.
Over the past five years evidence has mounted that long-duration (> 2 s) γ-ray bursts (GRBs) the most brilliant of all astronomical explosionssignal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova 1 , but now includes the association of GRBs with regions of massive star formation in distant galaxies 2,3 , the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts 4-6 and lines of freshly synthesized elements in the spectra of a few X-ray afterglows 7 . These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.