Human visual system can categorize objects rapidly and effortlessly despite the complexity and objective ambiguities of natural images. Despite the ease with which we see, visual categorization is an extremely difficult task for computers due to the variability of objects, such as scale, rotation, illumination, position and occlusion. This paper presents a biologically inspired model which gives a promising solution to object categorization in color space. Here, the biologically inspired features were extracted by log-polar Gabor Transform, aided by maximum operation and convolution with Prototype patches based on the saliency of the image. The extracted features are classified by SVM classifier. The framework has been applied to the image dataset taken from the Amsterdam Library of Object Images (ALOI) and the results are presented.
Face manipulation technology is rapidly developing, making it impossible for human eyes to recognize fake face photos. Convolutional Neural Network (CNN) discriminators, on the other hand, can fast achieve high accuracy in distinguishing fake/real face photos. In this paper, we look at how CNN models discern between fake and real faces. Face forgery detection relies heavily on Texture Variation Network (TVN) information, according to our findings. We propose a new model, TVN, for robust face fraud detection, based on Convolution and pyramid pooling (PP), as a result of the aforesaid discovery. To produce a stationary representation of composition difference information, Convolution combines pixel intensity and pixel gradient information. Simultaneously, multi-scale information fusion based on the PP can prevent the texture features from being destroyed. Our TVN beats previous techniques on numerous databases, including Faceforensics++, DeeperForensics-1.0, Celeb-DF, and DFDC. The TVN is more resistant to image distortion, such as JPEG compression and blur, which is critical in the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.