Emissions estimates of anthropogenic methane (CH4) sources are highly uncertain and many sources related to energy production are localized yet difficult to quantify.Airborne imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) are well suited for locating CH4 point sources due to their ability to map concentrations over large regions with the high spatial resolution necessary to resolve localized emissions. AVIRIS-NG was deployed during a field campaign to measure controlled CH4 releases at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming, U.S. for multiple flux rates and flight altitudes. Two algorithms were applied to AVIRIS-NG scenes, a matched filter detection algorithm and a hybrid retrieval approach using the Iterative Maximum a Posteriori Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm and Singular Value Decomposition.Plumes for releases as low as 14.16 m 3 /h (0.09 kt/year) were consistently observed by AVIRIS-NG at multiple flight altitudes and images of plumes were in agreement with wind directions measured at ground stations. In some cases plumes as low as 3.40 m 3 /h (0.02 kt/year) were detected, indicating that AVIRIS-NG has the capability of detecting a wide range of fugitive CH4 source categories for natural gas fields. This controlled release experiment is the first of its kind using AVIRIS-NG and demonstrates the utility of imaging spectrometers for direct attribution of emissions to individual point source locations. This is particularly useful given the large uncertainties associated with anthropogenic CH4 emissions, including those from industry, gas transmission lines, and the oil and gas sectors.
The ability of the Weather Research and Forecasting, large-eddy simulation model (WRF-LES) to model passive scalar dispersion from continuous sources located at ground-level and in the surface layer of convective and neutral atmospheric boundary layers was investigated. WRF-LES accurately modeled mean plume trajectories and concentration fields. WRF-LES statistics of concentration fluctuations in the daytime convective boundary layer were similar to data obtained from laboratory experiments and other LES models. However, poor turbulence resolution near the surface in neutral boundary layer simulations caused overestimation of concentration variance in the neutral surface layer. A gradient in the intermittency factor for concentration fluctuations was observed near the surface downwind of ground-level sources in the daytime boundary layer. That observation suggests that the intermittency factor is a promising metric for the estimation of source-sensor distance in practical source determination applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.