The usual characterization of exact solutions of Einstein field equations, including cosmological solutions, is based on the symmetry properties of their corresponding metrics which is obviously mathematically involved. Here we present a physical characterization of the static and stationary perfect fluid solutions of the Einstein field equations by employing the $$1+3$$ 1 + 3 formulation of spacetime decomposition which introduces the so-called quasi-Maxwell form of the Einstein field equations in the broader context of gravitoelectromagnetism. These solutions have a single or 2-component perfect fluid sources, and are characterized according to their gravitoelectric and gravitomagnetic fields which are the gravitational analogs of the electromagnetic fields. It is shown that the absence or presence of either or both of these fields could restrict the equations of state of the contributing perfect fluid sources. As the representative of each family of solutions, we consider those spaces that include the cosmological term as a dark fluid source with the equation of state $$p=-\rho = constant$$ p = - ρ = c o n s t a n t .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.