The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 µK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r) = 0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 µK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensorto-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources a .
The Booster Neutrino Experiment (MiniBooNE) searches for ν µ → ν e oscillations using the O(1 GeV) neutrino beam produced by the Booster synchrotron at the Fermi National Accelerator Laboratory (FNAL). The Booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beamline incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the beamline materials, as well as the decay of particles.The absolute double differential cross sections of pion and kaon production in the simulation have been tuned to match external measurements, as have the hadronic cross sections for nucleons and pions. The statistical precision of the flux predictions is enhanced through reweighting and resampling techniques. Systematic errors in the flux estimation have been determined by varying parameters within their uncertainties, accounting for correlations where appropriate.
A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ( d 2 σ dTµd cos θµ ) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy (σ[Eν]) and the single differential cross section ( dσ dQ 2 ) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.
corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C.L.
The MiniBooNE Collaboration reports a search for nu_{micro} and nu[over]_{micro} disappearance in the Deltam;{2} region of 0.5-40 eV;{2}. These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu_{micro} and nu[over]_{micro} energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu[over]_{micro} disappearance probes a region below Deltam;{2} = 40 eV;{2} never explored before.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.