Recent recurrent outbreaks of bacterial resistance to antibiotics have shown the critical need to identify new lytic agents to combat them. The species Lysobacter capsici VKM B-2533T possesses a potent antimicrobial action against a number of bacteria, fungi and yeasts. Its activity can be due to the impact of bacteriolytic enzymes, antibiotics and peptides. This work isolated four homogeneous bacteriolytic enzymes and a mixture of two proteins, which also had a bacteriolytic activity. The isolates included proteins identical to L. enzymogenes α- and β-lytic proteases and lysine-specific protease. The proteases of 26 kDa and 29 kDa and a protein identified as N-acetylglycosaminidase had not been isolated in Lysobacter earlier. The isolated β-lytic protease digested live methicillin-resistant staphylococcal cells with high efficiency (minimal inhibitory concentration, 2.85 μg/mL). This property makes the enzyme deserving special attention. A recombinant β-lytic protease was produced. The antimicrobial potential of the bacterium was contributed to by outer membrane vesicles (OMVs). L. capsici cells were found to form a group of OMVs responsible for antifungal activity. The data are indicative of a significant antimicrobial potential of this bacterium that requires thorough research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.