The power systems in developing countries are usually stressed and operated near their stability limits. Consequently, accurate sources of oscillations and their controls can present a challenge. This paper reports a comprehensive study of the oscillations in the Nigerian 48-bus power system. The dominant modes, sensitive locations for faults, and the most responsible generators were identified by modal analysis. Uniquely, the potential for nonlinear modal interaction of these modes was carefully investigated. The low-frequency modes identified are 1 Hz, 1.14 Hz, and 1.37 Hz, and they are associated mainly with the generators at Kainji, Afam, and Delta power stations. The results indicate the existence of inter-area phenomena and nonlinear modal interactions among these modes. Also, the analysis revealed that the generator at the Kainji power station is most affected by the nonlinear interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.