Imidacloprid is the most widely used pesticide of the neonicotinoid class. Neonicotinoid toxicities against various insects are well known. Nevertheless, there are rising evidences that neonicotinoids exert cytotoxic effects on different non-target organisms including mammals, fish, birds etc. Besides, depending on pesticide application, the exposed plants absorb some part of used neonicotinoids and their residues are detected in agricultural products worldwide. Thus, the continuous consumption of fruits and vegetables contaminated with neonicotinoids is a high risk factor for humans despite the low doses. Intestine epithelial cells are the first targets of the neonicotinoid cytotoxicity in humans because of its direct way of administration. The epithelial cells provide the barrier function of the intestinal system via specialized intercellular adhesion. The effects of imidacloprid on the intestine barrier function and inflammatory cytokines production are still unknown. In the present study, we exposed the human Caucasian colon adenocarcinoma (Caco-2) epithelial cells to low doses (0.10–0.75 µg/mL) of imidacloprid in order to assess the expression of tight and adherens junctions proteins, occludin and E-cadherin, and production of proinflammatory cytokine TNF α and iNOS. Imidacloprid induced dose-dependent decline in both occludin and E-cadherin levels. By contrast, TNF-α and iNOS contents were upregulated in imidacloprid-exposed Caco-2 cells. Decrease in tight and adherens junctions proteins indicates that the barrier function of intestine epithelial cells could be damaged by imidacloprid administration. In addition, TNF-α and iNOS upregulation indicates that imidacloprid is potent to activate proinflammatory response in enterocytes. Thus, imidacloprid can affect intestine barrier function through the increase of proinflammatory cytokine production and decrease in adhesiveness of enterocytes. The further assessment of the role of adhesion proteins and inflammatory cytokines in neonicotinoid pesticide cytotoxicity as it affects enterocyte barrier function is required to highlight the risk factor of use of neonicotinoids.
Gorban V., Huslystyi A., Kotovych O., Yakovenko V.: Changes in physical and chemical properties of Calcic chernozem affected by Robinia pseudoacacia and Quercus robur plantings. EkológiaGrowth of forest plantations on soils causes changes in their properties. These changes, their behavior, and magnitude depend on the original soil characteristics and also on the effect of forest plantations being grown. In the steppe zone of Ukraine, Robinia pseudoacacia L. and Quercus robur L. are the woody species most widely used in planting of forest plantations on chernozem soil. Chernozem soil formed exclusively under zonal steppe vegetation and chernozem soil under Robinia pseudoacacia and Quercus robur plantations were studied in this work to analyze the changes in soil properties caused by growth of these tree species. Dry aggregate size distribution, density, particle density, total porosity, organic carbon content, cation exchange capacity, pH values, hydrolytic soil acidity and dry residue, and the available nitrogen, phosphorus, and potassium content were analyzed. The studies found that Robinia pseudoacacia and Quercus robur plantations contribute to an increase in the share of aggregates 2-1 mm in size, as well as formation of aggregate fraction >10 mm, which are completely absent in the Calcic chernozem developed under the steppe vegetation. An increase in the density and particle density, as well as a decrease in the total porosity values were observed under the influence of forest stands studied. This is more common with chernozem under Q. robur plantation. It was found that the carbon percentage decreased in chernozem under the influence of Robinia pseudoacacia growth (on average, 0.4% by a meter-deep layer), but under Quercus robur planting it increased (on average 0.3% by meter-deep layer). Effect of Robinia pseudoacacia plantings on chernozem was also manifested by a decrease in cation exchange capacity (on average, 11 cmol/100 g by a meter-deep layer). The growth of R. pseudoacacia and Quercus robur plantations results in decrease of pH values (0.2 by a meter-deep layer) and increase of hydrolytic soil acidity and dry residue in chernozem water extract. Effect of Robinia pseudoacacia planting leads to a decrease in carbon, nitrogen, and phosphorus content in chernozem. The change in chernozem properties under the influence of Quercus robur plantation is reflected in accumulation of these nutrients. Growth of Robinia pseudoacacia and Quercus robur plantations leads to a decrease in potassium reserves in chernozem, which may indicate its active uptake by these woody species. In general, Q. robur planting is characterized by a large positive effect on the physical and chemical properties of chernozem than Robinia pseudoacacia planting. The findings obtained serve as a ground for making a recommendation for growing Quercus robur plantations under climate conditions of the steppe zone of Ukraine in order to improve the zonal chernozems' state and fertility.
Soil organic carbon (SOC) is an important component of any soil which determines many of its properties. Nowadays, more and more attention is being paid to the SOC content determination in soils by not using the conventional, time-consuming and expensive technique, but by using colour image processing of soil samples. In this case, even the camera of modern smartphones can be used as an image source, making this technique very convenient and practical. However, it is important to maintain certain standardised conditions (light intensity, light incidence angle, etc.) when capturing the images of soil samples. In our opinion, it is best to use a regular scanner for this purpose, with subsequent image processing by graphic programs (e.g., Adobe Photoshop). To increase the reliability of the colour information obtained in this way, it is desired (if possible) to use a spectrograph or a monochromator in the subsequent calculation of reflection or brightness ratios. It is these two approaches that we have implemented in our work. As a result of the experiment, the values of brightness ratios (at 480, 650 and 750 nm wavelengths and integral brightness ratio), colour indicators (the hue, saturation and value [HSV], red, green and blue [RGB], CIE L*a*b* and cyan, magenta, yellow and key [CMYK] systems) and SOC content in Calcic Chernozem samples of the steppe zone of Ukraine were obtained. Using correlation analysis of the dataset, the existence of direct (r = 0.88–0.90) and inverse close relationships (r = −0.75–0.90) between SOC, values of brightness ratios and colour indicators of the soil samples were established. This allows us to develop predictive models. Statistical analysis showed that the models were significant when they were based on the values of brightness ratios at 650 nm wavelength, integral brightness ratio, V indicator in HSV system, R, G and B indicators in RGB system, C, M and K indicators in CMYK system and L* and b* indicators in L*a*b* system. The subsequent calculation of variation coefficients showed that the largest variability was observed in SOC indicators (CV = 0.72) and slightly less variability in the K index of CMYK system and brightness ratio values at 650 nm wavelength (CV = 0.67 and 0.53, respectively). Based on this, we believe that the models y = 0.0188 + 0.0535*x (x is the value of the K index in CMYK system) and y = 5.0716 – 3.2255*log10(x) (x is the value of brightness ratio at 650 nm wavelength) were the most statistically significant and promising parameters for determining SOC content (y in these equations) in Calcic Chernozem samples of the steppe zone of Ukraine.
Currently, most amphibian populations in the world exist under the influence of numerous stress factors. Among them, the main factors that affect almost all terrestrial animals, namely, the fragmentation of habitats, environmental pollution and anthropic transformation of landscapes. Moreover, those factors are joined by negative causes that affect only amphibians – specific viral and fungal infections: ranaviruses (Ambystoma tigrinum virus (ATV), Bohle iridovirus (BIV), and frog virus 3) (also dangerous for some reptiles) and chytrid fungi (Batrachochytrium dendrobatidis and B. salamandrivorans). All these factors are one of the main reasons for the current global decline of amphibian populations in the world. In today's world, agricultural chemicals are one of the most important in terms of toxicity, environmental emissions and total area of impact. Among them, a significant proportion are formed by synthetic insecticides, which include pyrethroids and neonicotinoids. Pollution by these substances has a negative impact on amphibian populations, despite the relatively short period of their life in the environment. The vast majority of studies on the effects of pyrethroid and neonicotinoid insecticides were made in laboratory experiments with the larval stages of tailless amphibians. Tadpoles are easy to get in sufficient quantities and kept in the laboratory. Cypermethrin reduces the viability of tadpoles and causes precocious metamorphosis of survived larvae. However, in a combination with other pesticides, it delays metamorphosis. In addition, embryos were more resistant to pyrethroids than tadpoles. Pyrethroid pesticides cause spasms indicating adverse neurological effects. Formation of oral apparatus abnormalities in tadpoles, anisochromasia and increasing number of immature erythrocytes are also caused by pyrethroids. Neonicotinoids show similar effects. Under the action of imidacloprid the erythrocytes are also disturbed that is showed up in the DNA damage and micronuclei formation. Neurological disorders are manifested in the ability to perceive or respond to a predator, disorientation, erratic movement and loss of balance. Pyrethroids and neonicotinoids have been shown cause a variety of disorders: increase mortality and reduce survival of tadpoles; have a teratogenic effect and affect the metamorphosis and morphological parameters of amphibians; change many biochemical parameters that characterize the protein metabolism and oxidative stress; have genotoxic effects and affect the state of the nervous system and animal behaviour. Most of these parameters are proposed for use as biomarkers of pesticide intoxication.
Imidacloprid is a widely used pesticide that belongs to the class of neonicotinoids. There is a piece of rising evidence that neonicotinoids exert cytotoxic effects in non-target organisms including vertebrate species such as mammals. Nevertheless, dose-limiting toxicity and molecular mechanisms of neonicotinoids' deleterious effects are still poorly understood. In accord to imidacloprid fate in the environment, the most of used pesticide is absorbed in the soil. Therefore, earthworms, which are prevailing soil organisms, could be considered as a target of neonicotinoids toxicity. The earthworm’s simple nervous system is a prospective model for neurotoxicological studies. We exposed earthworms to imidacloprid in a paper contact test with a doses range of 0.1‑0.4 µg/cm2 for 14 days. In the present work, we studied the imidacloprid effect on oxidative stress generation and neuronal marker neuron-specific enolase (NSE) expression. The exposure to imidacloprid induced a dose-dependent decrease in NSE. Both reactive oxygen species production and lipid peroxidation level were upregulated as well. Observed NSE decline suggests imidacloprid-caused disturbance in earthworm neuron cells. Obtained data have shown that relatively low doses of imidacloprid are potent to induce cytotoxicity in neurons. Furthermore, neurotoxicity could be recognized as one of an individual scenario of the general imidacloprid toxicity. Thus, presented results suggest the cytotoxicity of imidacloprid low doses in non-target organisms and hypothesize that NSE downregulation could be estimated as a biomarker of neonicotinoid cytotoxicity in a nervous system of non-insect species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.