Работа посвящена исследованию нестационарных колебаний тонкой анизотропной неограниченной пластины Кирхгофа при воздействии на нее произвольных нестационарных нагрузок. Подход к решению основан на принципе суперпозиции и методе функций влияния (функций Грина), суть которого заключается в связи искомого решения с нагрузкой при помощи интегрального оператора типа свeртки по пространственным переменным и по времени. Ядром этого оператора является функция Грина для анизотропной пластины, которая представляет собой нормальные перемещения в ответ на воздействие единичной сосредоточенной нагрузки по координатам и времени, математически описываемой дельта-функциями Дирака. Для построения функции Грина использованы прямые и обратные интегральные преобразования Лапласа и Фурье. Обратное интегральное преобразование Лапласа найдено аналитически. Обратное двумерное интегральное преобразование Фурье найдено численно методом интегрирования быстро осциллирующих функций. Полученное фундаментальное решение позволило представить искомый нестационарный прогиб в виде тройной свертки по пространственным координатам и по времени функции Грина с функцией нестационарной нагрузки. Для вычисления интеграла свeртки и построения искомого решения использован метод прямоугольников. Найденная функция прогиба позволяет исследовать пространственно-временное поведение изгибных нестационарных колебаний в неограниченной пластине Кирхгофа для различных вариантов симметрии упругой среды: анизотропная, ортотропная, трансверсально-изотропная и изотропная. Представлены примеры расчетов.
The work is devoted to the construction of a new fundamental solution for a thin elastic anisotropic unbounded Kirchhoff plate on an inertial Winkler foundation. The fundamental solution is a function of the normal movement of two spatial coordinates and time in response to the impact of a single concentrated load, mathematically modeled by the Dirac delta function. The anisotropy model considered in this article has one plane of symmetry that geometrically coincides with the median plane of the plate and is characterized for the Kirchhoff plate model by six independent components of the tensor of elastic constants of the material. The problem statement includes the equations of motion of an anisotropic plate in displacements and initial conditions. The solution of the corresponding initial problem for the fundamental solution is constructed using integral Laplace transformations in time and two-dimensional integral Fourier transform in spatial coordinates. The inverse integral Laplace transform is found analytically with a preliminary analysis of the invertible function. The original fundamental Fourier solution is constructed using the numerical method of integrating rapidly oscillating functions. The parameters of numerical integration are calculated with a given accuracy when analyzing the quality of the desired functions by a continuous norm. For the constructed new fundamental solution, a numerical analysis of the nature of the propagation of nonstationary disturbances is carried out, and the influence of the parameters of the inertial Winkler foundation on the behavior of the normal deflection of an anisotropic plate in time at the point of action of the delta function is investigated. The asymmetric nature of unsteady plate oscillations consistent with the model of the elastic medium under consideration is demonstrated. The constructed fundamental solution makes it possible to investigate the nonstationary normal deflection of an anisotropic plate on an inertial basis under the action of arbitrary loads using an integral operator of the convolution type in spatial coordinates and time. In addition, the fundamental solution has versatility with respect to the properties of the plate materials and the parameters of the foundation, namely: isotropic, transversally isotropic and orthotropic materials can act as the plate material. In this case, the foundation may be inertialess or absent altogether.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.