The problem of respiratory diseases associated with staphylococcal carriers is considered to be one of the most acute in modern society due to its high prevalence and problems with treatment due to the high resistance of these bacteria to antibiotics. The purpose of the study was to determine the sensitivity of Staphylococcus aureus strains, able to form biofilm, isolated from the upper respiratory tract of human. Materials and methods. Bacteriological methods of isolation and identification of staphylococci, the method of rapid determination of the ability to form biofilm on a tablet and the disk-diffusion method of determining the susceptibility to antibiotics were used to perform the research. As a result of the conducted researches it was established that in the structure of pathogens of exacerbations of seasonal rhinitis S. aureus prevailed. It was isolated from 34 samples of biological material from the nose, which accounted for 69.4% of all examined cases of rhinitis. Staphylococcus spp. (6.1%) and Streptococcus spp. (24.5%) among the isolated strains of S. aureus, 27 (79.4%) had the ability to form a biofilm. A feature associated with antibiotic resistance is the ability of strains of microorganisms to form a biofilm, in which they acquire enhanced ability to survive under adverse environmental factors, including the use of drugs. Results and discussion. In our research we showed that more than 80% of film-forming strains were found to be susceptible to ciprofloxacin, amoxicillin / clavulanic acid and azithromycin. 4 (14.8%) are methicillin-resistant. Resistance to methicillin was detected simultaneously with resistance to ciprofloxacin (3 cases) and to azithromycin (2 cases), 1 strain was resistant to gentamicin and 2 – to tetracycline. 1 of the methicillin-resistant strains of S. aureus was multidrug-resistant (showed resistance to all studied antibiotics). Among non-biofilm strains, more than 80% of the strains were also sensitive to ciprofloxacin, amoxicillin / clavulanic acid and azithromycin. Sensitivity to tetracycline was low in both groups (42-63% sensitive). Conclusion. The prevalence of antibiotic resistance among clinical strains of opportunistic bacteria, unfortunately, shows an increasing trend. This requires constant monitoring of susceptibility to antimicrobial drugs in order to develop schemes of rational antibiotic therapy, taking into account the individualized approach to patients. In this sense, it is promising when studying the biological properties of clinical isolates to determine not only the resistance to antibiotics, but also their ability to form a biofilm
The problem of biofilm formation by clinical strains of opportunistic bacteria is one of the most significant for medicine, because in a state of biofilm bacteria become more resistant to environmental factors, including antibiotics, a situation that can cause failure of treatment. Among opportunistic pathogens staphylococci are of special interest. Knowledge about the peculiarities of biofilm formation of these strains, in particular the polysaccharide biosynthesis, can be used for creation of a strategy of prophylaxis of different lesions that bind with staphylococci. The effect of different concentrations of the most widespread sugars (glucose, sucrose, lactose, galactose) on the activity of biofilm formation by strains of Staphylococcus epidermidis was investigated. Strains of S. epidermidis (n = 7) were isolated from the reproductive tract of women with dysbiosis. The cultures were grown in universal synthetic media with concentration of one of the listed sugars (0.5–3.0%) during 72 h. Results were obtained colorimetrically. We studied the number of cells in biofilm and the index of biofilm formation. The largest number of cells in the biofilm was observed when the culture incubated in a medium with 2.0% of glucose (increase of 25.3 times compared to control). The amount of CFU in the control biofilm was 9.96 lg CFU/mL. The glucose concentration of 3.0% inhibited the biofilm formation: the number of cells in the biofilm was 569 times less compared to the control. The highest value of biofilm formation index was 7.2, which was 1.3 times higher than the control (5.4). In the presence of lactose and galactose in nutrient medium in concentrations from 1.0% a decrease in the number of cells and biofilm formation index were observed. The received data show that process of biofilm formation is significantly dependent on external sources of sugars, which can indicate the possibility of their use as antibiofilm drug compounds, which inhibit membrane transport of sugars in bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.