Image enhancement is an important preprocessing step of infrared (IR) based target recognition and surveillance systems. For a better visualization of targets, it is vital to develop image enhancement techniques that increase the contrast between the target and background and emphasize the regions in the target while suppressing noises and background clutter. This study proposes what we believe to be a novel IR image enhancement method for sea-surface targets based on local frequency cues. The image is transformed blockwise into the Fourier domain, and clustering is done according to the number of expected regions to be enhanced in the scene. Based on the variations in the elements in any cluster and the differences between the cluster centers in the frequency domain, two gain matrices are computed for midfrequency and high frequency images by which the image is enhanced accordingly. We provide results for real data and compare the performance of the proposed algorithm through subjective and quantitative tests with four different enhancement methods. The algorithm shows a better performance in the detail visibility of the target.
Sea-surface targets are automatically detected and tracked using the bag-of-features (BOF) technique with the scale-invariant feature transform (SIFT) in infrared (IR) and visual (VIS) band videos. Features corresponding to the sea-surface targets and background are first clustered using a training set offline, and these features are then used for online target detection using the BOF technique. The features corresponding to the targets are matched to those in the subsequent frame for target tracking purposes with a set of heuristic rules. Tracking performance is compared with an optical-flow-based method with respect to the ground truth target positions for different real IR and VIS band videos and synthetic IR videos. Scenarios are composed of videos recorded/generated at different times of day, containing single and multiple targets located at different ranges and orientations. The experimental results show that sea-surface targets can be detected and tracked with plausible accuracies by using the BOF technique with the SIFT in both IR and VIS band videos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.