A research-type 4 T whole-body magnet, built by Siemens AG, Erlangen, FRG, was used to investigate magnetic resonance at high field strengths. Designs for head and body coils operating at 170 MHz are described. Proton images of the human head and body are degraded by dielectric resonances and penetration effects. The nature of the dielectric resonances was demonstrated in phantoms containing distilled and saline doped water. Radiation damping at 170 MHz generates secondary echoes after a spin echo sequence. This effect was observed in phantoms and with reduced amplitude in the human head. Hydrogen spectra of the human head were selected utilizing stimulated and spin echoes. The latter technique allows the volume size to be reduced to 1 cm3. Examples of brain tumors that have been routinely investigated with volumes of 8 cm3 are given. Natural abundance carbon and phosphorus spectra of muscle and liver demonstrate the expected increase in spectral resolution and signal to noise ratio. Carbon spectra from the liver show the glycogen signal. Fluorine spectroscopy was used to study the time course of the absorption and emptying of a fluorinated antibiotic from the human stomach.
In 2D Fourier imaging the normal Carr-Purcell multiple-echo sequence generally leads to center line and mirror artifacts caused by imperfect rotations by the rf pulses. We describe a method to avoid these distortions using a phase alternating-phase shift (PHAPS) sequence which also allows multiple-slice and multiple-echo imaging at the same time. Measuring phantoms with calibrated T2 values, we have shown that the PHAPS imaging sequence leads to an accuracy of quantitative T2 determinations of better than 10%. Contrast-enhanced images are presented which we calculated from multiple-echo images and extrapolated to arbitrary echotimes, including negative ones. We believe that these improvements in T2 imaging will result in a significant reduction of patient investigation time in magnetic resonance imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.