BackgroundA reduction of the number of parvalbumin (PV)-immunoreactive (PV+) GABAergic interneurons or a decrease in PV immunoreactivity was reported in several mouse models of autism spectrum disorders (ASD). This includes Shank mutant mice, with SHANK being one of the most important gene families mutated in human ASD. Similar findings were obtained in heterozygous (PV+/-) mice for the Pvalb gene, which display a robust ASD-like phenotype. Here, we addressed the question whether the observed reduction in PV immunoreactivity was the result of a decrease in PV expression levels and/or loss of the PV-expressing GABA interneuron subpopulation hereafter called “Pvalb neurons”. The two alternatives have important implications as they likely result in opposing effects on the excitation/inhibition balance, with decreased PV expression resulting in enhanced inhibition, but loss of the Pvalb neuron subpopulation in reduced inhibition.MethodsStereology was used to determine the number of Pvalb neurons in ASD-associated brain regions including the medial prefrontal cortex, somatosensory cortex and striatum of PV-/-, PV+/-, Shank1-/- and Shank3B-/- mice. As a second marker for the identification of Pvalb neurons, we used Vicia Villosa Agglutinin (VVA), a lectin recognizing the specific extracellular matrix enwrapping Pvalb neurons. PV protein and Pvalb mRNA levels were determined quantitatively by Western blot analyses and qRT-PCR, respectively.ResultsOur analyses of total cell numbers in different brain regions indicated that the observed “reduction of PV+ neurons” was in all cases, i.e., in PV+/-, Shank1-/- and Shank3B-/- mice, due to a reduction in Pvalb mRNA and PV protein, without any indication of neuronal cell decrease/loss of Pvalb neurons evidenced by the unaltered numbers of VVA+ neurons.ConclusionsOur findings suggest that the PV system might represent a convergent downstream endpoint for some forms of ASD, with the excitation/inhibition balance shifted towards enhanced inhibition due to the down-regulation of PV being a promising target for future pharmacological interventions. Testing whether approaches aimed at restoring normal PV protein expression levels and/or Pvalb neuron function might reverse ASD-relevant phenotypes in mice appears therefore warranted and may pave the way for novel therapeutic treatment strategies.
Aberrant synaptic function is thought to underlie social deficits in neurodevelopmental disorders such as autism and schizophrenia. Although microRNAs have been shown to regulate synapse development and plasticity, their potential involvement in the control of social behaviour in mammals remains unexplored. Here, we show that deletion of the placental mammal‐specific miR379‐410 cluster in mice leads to hypersocial behaviour, which is accompanied by increased excitatory synaptic transmission, and exaggerated expression of ionotropic glutamate receptor complexes in the hippocampus. Bioinformatic analyses further allowed us to identify five “hub” microRNAs whose deletion accounts largely for the upregulation of excitatory synaptic genes observed, including Cnih2, Dlgap3, Prr7 and Src. Thus, the miR379‐410 cluster acts a natural brake for sociability, and interfering with specific members of this cluster could represent a therapeutic strategy for the treatment of social deficits in neurodevelopmental disorders.
Alterations in SHANK genes were repeatedly reported in autism spectrum disorder (ASD). ASD is a group of neurodevelopmental disorders diagnosed by persistent deficits in social communication/interaction across multiple contexts, with restricted/repetitive patterns of behavior. To date, diagnostic criteria for ASD are purely behaviorally defined and reliable biomarkers have still not been identified. The validity of mouse models for ASD therefore strongly relies on their behavioral phenotype. Here, we studied communication by means of isolation-induced pup ultrasonic vocalizations (USV) in the Shank1 mouse model for ASD by comparing Shank1(-/-) null mutant, Shank1(+/-) heterozygous, and Shank1(+/+) wildtype littermate controls. The first aim of the present study was to evaluate the effects of Shank1 deletions on developmental aspects of communication in order to see whether ASD-related communication deficits are due to general impairment or delay in development. Second, we focused on social context effects on USV production. We show that Shank1(-/-) pups vocalized less and displayed a delay in the typical inverted U-shaped developmental USV emission pattern with USV rates peaking on postnatal day (PND) 9, resulting in a prominent genotype difference on PND6. Moreover, testing under social conditions revealed even more prominently genotype-dependent deficits regardless of the familiarity of the social context. As communication by definition serves a social function, introducing a social component to the typically nonsocial test environment could therefore help to reveal communication deficits in mouse models for ASD. Together, these results indicate that SHANK1 is involved in acoustic communication across species, with genetic alterations in SHANK1 resulting in social communication/interaction deficits. Autism Res 2016, 9: 696-709. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Ultrasonic vocalizations (USV) serve important communicative functions as socio-affective signals in rats. In aversive situations, such as inter-male aggression and predator exposure, 22-kHz USV are emitted. They likely function as appeasement signals during fighting and/or as alarm calls to warn conspecifics. In appetitive situations, 50-kHz USV are uttered, most notably during social interactions, such as rough-and-tumble play and mating. It is believed that they fulfill an affiliative function as social contact calls. Social experiences or their lack, such as social isolation, can have profound impact on the emission of 22- and 50-kHz USV by the sender in later life, albeit direction and strength of observed effects vary, with time point of occurrence and duration being critical determinants. Little, however, is known about how social experiences affect the behavioral responses evoked by 22- and 50-kHz USV in the recipient. By means of our 50-kHz USV radial maze playback paradigm, we recently showed that the behavioral response elicited in the recipient is affected by post-weaning social isolation. Rats exposed to four weeks of isolation during the rough-and-tumble play period did not display social approach behavior toward 50-kHz USV but some signs of social avoidance. We further found that physical environmental enrichment providing minimal opportunities for social interactions has similar detrimental effects. Together, this indicates that social experiences can affect socio-affective communication in rodents, both at the level of sender and recipient. Deficits seen following post-weaning social isolation or physical environmental enrichment might be useful to model aspects of neurodevelopmental disorders characterized by social and communication deficits, such as autism and schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.