Eosinophilic leukocytes have been implicated as primary effector cells in inflammatory and allergic diseases. When activated by cytokines, human eosinophils secrete and produce a variety of proinflammatory or tissue damaging substances. Although well known for their chemoattractant effects, little is known about the precise contribution of the eosinophil-selective chemokines, eotaxin, eotaxin-2, and eotaxin-3 to the effector functions of eosinophils. This forms the central focus of these investigations for which clone 15-HL-60 human eosinophilic cells were used as the in vitro model. Investigation results suggest that all three subtypes of eotaxin directly stimulate eosinophil superoxide anion generation that is inhibited by neutralizing eotaxin antibody or pretreatment of cells with the receptor antibody anti-CCR3. Pretreatment or co-treatment with each of the eotaxins augmented phorbol myristate-induced superoxide generation. Concentration-dependent degranulation of eosinophil peroxidase was noted for all three chemokines, and potentiation of calcium lonophore-induced degranulation was observed with eotaxin pretreatments. Results of interleukin-5 pretreatment studies suggest that the eotaxin chemokines may act cooperatively to enhance effector functions of eosinophils. Collectively, the present studies have advanced knowledge of the eotaxin family of chemokines to include eosinophil priming and modulation of eosinophil activation and secretion effector functions.
Eosinophilic leukocytes are the cellular hallmark of allergic inflammation. Apart from being potent eosinophils chemoattractants, the eotaxins CCL11, CCL24 and CCL26 are capable of activating eosinophils to generate reactive oxygen species, lipid mediators of inflammation and degranulation of toxic granule proteins. Due to their central role in eosinophil trafficking and activation, understanding the signal transduction mechanism of the eotaxin-induced eosinophil effector functions may provide an innovative therapeutic strategy for eosinophil-associated diseases. Thus, these investigations were conducted to delineate signal transduction mechanisms of CCL11, CCL24 and CCL26-induced eosinophil peroxidase (EPO) degranulation following pretreatment of cells with or without a specific inhibitor of MEK1/MEK2 (U0126), inhibitor of p38 MAP kinase (SB203580) or a specific inhibitor of PI 3-kinase (LY294002). Results have shown that CCR3-mediated eotaxin-induced eosinophilic degranulation was concentration-dependently reduced by specific inhibitors of ERK1/ERK2, p38 MAP kinase and PI 3-kinase. However, the rank order of U0126 with respect to inhibition of chemokine-induced degranulation was CCL11 = CCL24 > CCL26. Potentiation of eotaxin-induced EPO degranulation by IL-5 was also seen. These investigations have not only confirmed the reported co-operativity between IL-5 and the eotaxins but also showed that the eosinophil-degranulating capabilities of the eotaxin CCL11, CCL24 and CCL26 is a consequence of activation of ERK1/ERK2, p38 MAP kinase and PI 3-kinase. Thus, these signaling molecules may provide the biochemical basis for mechanism-based therapy of allergic inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.