Transrectal ultrasonography of ovaries was performed each day in non-prolific Western white-faced (n = 12) and prolific Finn ewes (n = 7), during one oestrous cycle in the middle portion of the breeding season (October-December), to record the number and size of all follicles > or = 3 mm in diameter. Blood samples collected once a day were analysed by radioimmunoassay for concentrations of LH, FSH and oestradiol. A cycle-detection computer program was used to identify transient increases in concentrations of FSH and oestradiol in individual ewes. Follicular and hormonal data were then analysed for associations between different stages of the lifespan of the largest follicles of follicular waves, and detected fluctuations in serum concentrations of FSH and oestradiol. A follicular wave was defined as a follicle or a group of follicles that began to grow from 3 to > or = 5 mm in diameter within a 48 h period. An average of four follicular waves per ewe emerged during the interovulatory interval in both breeds of sheep studied. The last follicular wave of the oestrous cycle contained ovulatory follicles in all ewes, and the penultimate wave contained ovulatory follicles in 10% of white-faced ewes but in 57% of Finn ewes. Transient increases in serum concentrations of FSH were detected in all animals and concentrations reached peak values on days that approximated to follicle wave emergence. Follicular wave emergence was associated with the onset of transient increases in serum concentrations of oestradiol, and the end of the growth phase of the largest follicles (> or = 5 mm in diameter) was associated with peak serum concentrations of oestradiol. Serum FSH concentrations were higher in Finn than in Western white-faced ewes during the follicular phase of the cycle (P < 0.05). There were no significant differences in serum concentrations of LH between Western white-faced and Finn ewes (P > 0.05). Mean serum concentrations of oestradiol were higher in Finn compared with Western white-faced ewes (P < 0.01). It was concluded that follicular waves (follicles growing from 3 to > or = 5 mm in diameter) occurred in both prolific and non-prolific genotypes of ewes and were closely associated with increased secretion of FSH and oestradiol. The increased ovulation rate in prolific Finn ewes appeared to be due primarily to an extended period of ovulatory follicle recruitment.
The aim of the present study was to document ovarian antral follicle dynamics throughout seasonal anoestrus in sheep. Daily transrectal ultrasonography was performed during four 17 day scanning periods from March to July in Western White-faced crossbred ewes. Blood samples were collected each day with ultrasonographic scanning for measurement of serum concentrations of FSH, oestradiol and progesterone. Blood samples were also taken every 15 min for 6 h, mid-way through each period of ultrasonographic examination, to determine the patterns of secretion of gonadotrophic hormones. Hormonal data were then related to observed changes in follicular populations and the patterns of antral ovarian follicle turnover. Ultrasonography showed that the ovaries of anoestrous ewes remained active and that the largest ovarian antral follicles grew to a periovulatory size (> or = 5 mm in diameter) at all stages of anoestrus. The total number of all ovarian follicles > or = 3 mm in diameter was lower during early anoestrus compared with at mid-anoestrus because of a significantly smaller number of small (3 mm) and medium (4 mm) ovarian follicles. The largest ovarian follicles (attaining > or = 5 mm in diameter before regression) exhibited a wave-like pattern of growth; an average of three waves of follicular development were recorded in sheep during each of the four 17 day scanning periods in anoestrus, with follicular waves emerging approximately every 5 days. This rhythmic pattern of follicular emergence was found to be associated with the occurrence of fluctuations in serum FSH concentrations. The growth rate of the largest follicles of the wave increased significantly from early to late anoestrus in sheep. In addition, ovarian follicles not growing beyond 3 mm in diameter showed organized patterns of growth and regression; their numbers tended to be lower (P = 0.09) at 3 days before and on the day of follicular wave emergence. Some ewes were seen to maintain synthesis of progesterone throughout anoestrus. This submaximal progesterone secretion tended to occur at irregular intervals and was not coupled with changes in concentrations or patterns of gonadotrophin release, ovulations or detectable morphological luteinization of ovarian antral follicles. It was concluded that the growth of ovarian antral follicles to an ovulatory size was maintained throughout anoestrus in ewes, with a transient shift in the number of small and medium-sized follicles during mid-anoestrus, and that the periodic emergence of waves of large follicles (> or = 5 mm in diameter) occurred in synchrony with an endogenous rhythm of FSH secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.