Ground-and space-based planet searches employing radial velocity techniques and transit photometry have detected thousands of planet-hosting stars in the Milky Way. With so many planets discovered, the next step toward identifying potentially habitable planets is atmospheric characterization. While the Sun-Earth system provides a good framework for understanding the atmospheric chemistry of Earth-like planets around solar-type stars, the observational and theoretical constraints on the atmospheres of rocky planets in the habitable zones (HZs) around low-mass stars (K and M dwarfs) are relatively few. The chemistry of these atmospheres is controlled by the shape and absolute flux of the stellar spectral energy distribution (SED), however, flux distributions of relatively inactive low-mass stars are poorly understood at present. To address this issue, we have executed a panchromatic (X-ray to mid-IR) study of the SEDs of 11 nearby planet-hosting stars, the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) Treasury Survey. The MUSCLES program consists visible observations from Hubble and ground-based observatories. Infrared and astrophysically inaccessible wavelengths (EUV and Lyα) are reconstructed using stellar model spectra to fill in gaps in the observational data. In this overview and the companion papers describing the MUSCLES survey, we show that energetic radiation (X-ray and ultraviolet) is present from magnetically active stellar atmospheres at all times for stars as late as M6. The emission line luminosities of C IV and Mg II are strongly correlated with band-integrated luminosities and we present empirical relations that can be used to estimate broadband FUV and XUV (≡X-ray + EUV) fluxes from individual stellar emission line measurements. We find that while the slope of the SED, FUV/NUV, increases by approximately two orders of magnitude form early K to late M dwarfs (≈0.01-1), the absolute FUV and XUV flux levels at their corresponding HZ distances are constant to within factors of a few, spanning the range 10-70 erg cm −2 s −1 in the HZ. Despite the lack of strong stellar activity indicators in their optical spectra, several of the M dwarfs in our sample show spectacular UV flare emission in their light curves. We present an example with flare/quiescent ultraviolet flux ratios of the order of 100:1 where the transition region energy output during the flare is comparable to the total quiescent luminosity of the star E flare (UV) ∼ 0.3 L * Δt (Δt = 1 s). Finally, we interpret enhanced L(line)/L Bol ratios for C IV and N V as tentative observational evidence for the interaction of planets with large planetary mass-to-orbital distance ratios (M plan /a plan ) with the transition regions of their host stars.
We present an all-sky catalog of 2970 nearby (d 50 pc), bright (J < 9) M-or late Ktype dwarf stars, 86% of which have been confirmed by spectroscopy. This catalog will be useful for searches for Earth-size and possibly Earth-like planets by future spacebased transit missions and ground-based infrared Doppler radial velocity surveys. Stars were selected from the SUPERBLINK proper motion catalog according to absolute magnitudes, spectra, or a combination of reduced proper motions and photometric colors. From our spectra we determined gravity-sensitive indices, and identified and removed 0.2% of these as interloping hotter or evolved stars. Thirteen percent of the stars exhibit Hα emission, an indication of stellar magnetic activity and possible youth. The mean metallicity is [Fe/H] = -0.07 with a standard deviation of 0.22 dex, similar to nearby solar-type stars. We determined stellar effective temperatures by least-squares fitting of spectra to model predictions calibrated by fits to stars with established bolometric temperatures, and estimated radii, luminosities, and masses using empirical relations. Six percent of stars with images from integral field spectra are resolved doubles. We inferred the planet population around M dwarfs using Kepler data and applied this to our catalog to predict detections by future exoplanet surveys.
The active K2 dwarf ǫ Eri has been extensively characterized, both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3 year magnetic activity cycle in ǫ Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3 year and 13 year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3 year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 ± 0.03 years and 12.7 ± 0.3 years, which by analogy with the solar case suggests a revised identification of the dynamo mechanisms that are responsible for the so-called "active" and "inactive" sequences as proposed by Böhm-Vitense. Finally, based on the observed properties of ǫ Eri we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.