SummaryWe discuss scanning near-field optical microscope based on original double resonant montage of a fibre probe onto the tuning fork and proprietary electronics capable of fast and precise measurements of the resonant frequency and the quality factor of sensor dithering. Special emphasis is given on the pulsed excitation/gated detection of optical signal. This option as well as the possibility of fast scanning facilitates a lot the problem of single fluorescence centres detection. To illustrate the performance of this microscope, we present first true single-molecule fluorescence resonance energy transfer scanning near-field optical microscope images of single CdSe nanocrystals on glass slide surface and observation of an optical 'pseudoresolution' of densely packed 100-nm-diameter transfluorescent spheres in noisy conditions.
A surface-contact transducer is developed for scanning probe microscopes, whose operating principle is based on the coincidence between the resonance frequency of a 32kHz quartz tuning fork and that of the probe attached to it. This allows the transducer to have a high quality factor and, if the vibration amplitude of the probe tip exceeds that of the tuning fork prongs, materially improves its force sensitivity. The resonance transducer proposed by us has an experimentally verified force sensitivity of 8pN (rms) in the 300Hz frequency band, which is of the same order of magnitude as the sensitivity of atomic force microscope (AFM) cantilever sensors. The manufacture of such transducers equipped with optical-fiber probes for near-field scanning optical microscopy and with tungsten probes for AFM is described as an example.
We have developed a surface-contact sensor on the basis of a tuning fork which differs from the previously described ones in that it has a high operating speed (up to 100 times as fast as the so-called Q limit), requires no external piezoelectric drive, has a sufficiently high sensitivity, and features a “soft” probe attachment which makes the lifetime of the probe equal to that of the standard atomic force microscopy. When using a “soft” probe with a rigidity of 0.5 N/m, one can reliably detect probe tip-to-sample distance variations as small as 0.1 nm. The resonance frequency resolution attained amounted to 2×10−3 Hz. The rate of transient rise is τ=1.5 ms (this refers to the response time of the sensor proper with the Z-coordinate feedback loop open and not to the response time of the microscope as a whole). We have theoretically substantiated the fact that the Q limit, where Q∼10 000 is the Q factor of the tuning fork proper, is not a fundamental restriction on the operating speed of the sensor. This sensor characteristic is governed by another independent quantity, namely, Q1∼100: the quality factor of the tuning fork preamplifier system that can be varied to suit the experimenter. In that case, the fundamental force limitation on the sensitivity of the sensor, associated with its operating speed and the Q factor of the tuning fork, is Fnoise≈10.4 nN/(√Q√Q1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.