Laser cooling and crystallization of electron-ion plasma is studied using the Brownian dynamics simulation technique and taking into consideration the interaction of ions with the electron subsystem. It has been shown that the nonlinear dependence of laser friction force on the velocity of ions has to be taken into account in order to simulate in an adequate manner the cooling dynamics and obtain a correct estimate for minimum temperatures. It has been found that times required for formation of an ordered ionic structure can be much longer than the typical plasma cooling time.
The method of molecular dynamics is used to study behavior of a ultracold non-ideal ion-electron Be + plasma in a uniform magnetic field. Our simulations yield an estimate for the rate of electron-ion collisions which is non-monotonically dependent on the magnetic field magnitude. Also they explicitly show that there are two types of diffusion: classical one, corresponding to Brownian motion of particles, and Bohm diffusion when the trajectory of particles (guiding centers) includes substantial lengths of drift motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.