Objective. To determine whether engineered cartilage generated by nasal chondrocytes (ECN) is responsive to different regimens of loading associated with joint kinematics and previously shown to be stimulatory of engineered cartilage generated by articular chondrocytes (ECA).Methods. Human nasal and articular chondrocytes, harvested from 5 individuals, were expanded and cultured for 2 weeks into porous polymeric scaffolds. The resulting ECN and ECA were then maintained under static conditions or exposed to the following loading regimens: regimen 1, single application of cyclic deformation for 30 minutes; regimen 2, intermittent application of cyclic deformation for a total of 10 days, followed by static culture for 2 weeks; regimen 3, application of surface motion for a total of 10 days.Results. Prior to loading, ECN constructs contained significantly higher amounts of glycosaminoglycan (GAG) and type II collagen compared with ECA constructs. ECN responded to regimen 1 by increasing collagen and proteoglycan synthesis, to regimen 2 by increasing the accumulation of GAG and type II collagen as well as the dynamic modulus, and to regimen 3 by increasing the expression of superficial zone protein, at the messenger RNA level and the protein level, as well as the release of hyaluronan. ECA constructs were overall less responsive to all loading regimens, likely due to the lower extracellular matrix content.Conclusion. Human ECN is responsive to physical forces resembling joint loading and can up-regulate molecules typically involved in joint lubrication. These findings should prompt future in vivo studies exploring the possibility of using nasal chondrocytes as a cell source for articular cartilage repair.
SummaryObjectiveTo examine effects of high omega-3 (n-3) polyunsaturated fatty acid (PUFA) diets on development of osteoarthritis (OA) in a spontaneous guinea pig model, and to further characterise pathogenesis in this model. Modern diets low in n-3 PUFAs have been linked with increases in inflammatory disorders, possibly including OA. However, n-3 is also thought to increases bone density, which is a possible contributing factor in OA. Therefore we aim to determine the net influence of n-3 in disease development.MethodOA-prone Dunkin-Hartley (DH) Guinea pigs were compared with OA-resistant Bristol Strain-2s (BS2) each fed a standard or an n-3 diet from 10 to 30 weeks (10/group). We examined cartilage and subchondral bone pathology by histology, and biochemistry, including collagen cross-links, matrix metalloproteinases (MMPs), alkaline phosphatase, glycosaminoglycan (GAG), and denatured type II collagen.ResultsDietary n-3 reduced disease in OA-prone animals. Most cartilage parameters were modified by n-3 diet towards those seen in the non-pathological BS2 strain – significantly active MMP-2, lysyl-pyridinoline and total collagen cross-links – the only exception being pro MMP-9 which was lower in the BS2, yet increased with n-3. GAG content was higher and denatured type II lower in the n-3 group. Subchondral bone parameters in the DH n-3 group also changed towards those seen in the non-pathological strain, significantly calcium:phosphate ratios and epiphyseal bone density.ConclusionDietary n-3 PUFA reduced OA in the prone strain, and most disease markers were modified towards those of the non-OA strain, though not all significantly so. Omega-3 did not increase markers of pathology in either strain.
This study was designed to determine if the maturation stage of engineered cartilage implanted in a goat model of cartilage injury infl uences the repair outcome. Goat engineered cartilage was generated from autologous chondrocytes cultured in hyaluronic acid scaffolds using 2 d, 2 weeks or 6 weeks of pre-culture and implanted above hydroxyapatite/hyaluronic acid sponges into osteochondral defects. Control defects were left untreated or treated with cell-free scaffolds. The quality of repair tissues was assessed 8 weeks or 8 months post implantation by histological staining, modifi ed O'Driscoll scoring and biochemical analyses. Increasing pre-culture time resulted in progressive maturation of the grafts in vitro. After 8 weeks in vivo, the quality of the repair was not improved by any treatment. After 8 months, O'Driscoll histology scores indicated poor cartilage architecture for untreated (29.7 ± 1.6) and cell-free treated groups (24.3 ± 5.8). The histology score was improved when cellular grafts were implanted, with best scores observed for grafts pre-cultured for 2 weeks (16.3 ± 5.8). As compared to shorter pre-culture times, grafts cultured for 6 weeks (histology score: 22.3 ± 6.4) displayed highest type II/I collagen ratios but also inferior architecture of the surface and within the defect, as well as lower integration with native cartilage. Thus, pre-culture of engineered cartilage for 2 weeks achieved a suitable compromise between tissue maturity and structural/integrative properties of the repair tissue. The data demonstrate that the stage of development of engineered cartilage is an important parameter to be considered in designing cartilage repair strategies.
The aim of this investigation was to determine the effect of growth factor treatment on ovine meniscal chondrocyte (OMC) proliferation in vitro and on the production of matrix proteins by OMCs grown within a polyglycolic acid (PGA) scaffold. Analysis of 72-h monolayer cultures using the mean transit time (MTT) assay revealed a greater increase in OMC numbers in the presence of platelet-derived growth factor (PDGF)-AB, PDGF-BB, insulin-like growth factor (IGF)-I, transforming growth factor-beta1 (TGF-beta1) and basic fibroblast growth factor (bFGF) than in untreated controls. In contrast, IGF-II and bone morphogenetic protein-2 had no effect on OMC proliferation at the concentrations tested. The growth factors that elicited the greatest proliferative response (PDGF-AB, PDGF-BB, TGF-beta1, and IGF-I) were subsequently tested for their ability to enhance OMC proliferation and differentiation within PGA scaffolds. Biochemical analysis revealed less glycosaminoglycan (GAG) production in the presence of all growth factors tested compared to untreated control samples. In contrast, all of the growth factors increased collagen type I production by OMCs within the scaffolds at day 20, and all except PDGF-BB resulted in an increase at day 39, when compared to appropriate control samples. With the exception of IGF-I, none of the growth factors tested had any significant effect on collagen type II production. Histological staining of sections from OMC-PGA scaffolds did not reveal any difference in GAG or collagen production between the treatment groups. However, immunohistochemical analysis demonstrated an increase in collagen type I expression and a decrease in collagen type II at day 39 in all growth factortreated constructs, concomitant with a high infiltration of cells. This suggests that PDGF-AB, PDGF-BB, TGF-beta1, and IGF-1 may be useful in future tissue engineering studies for promoting meniscal cell proliferation and differentiation within scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.