Електромагнітні приводи широко використовуються на промисловому вібраційному обладнанні. При їх проектуванні виникає задача моделювання електромеханічних процесів з метою раціонального вибору їх параметрів. Тому розвиток математичних моделей таких приводів є актуальною науковою проблемою. Останнім часом для моделювання електромеханіки широке розповсюдження отримали моделі, основані на апроксимації результатів числових розрахунків тривимірних полів у магнітній системі виконавчого пристрою. Метою даної роботи є аналіз методів апроксимації залежностей потокозчеплення електромагнітного вібратора від магніторушійної сили та величини повітряного зазору при побудові математичних моделей електромагнітних вібраційних приводів. Розглянуто два основних методи: інтерполяцію кубічними сплайнами та апроксимацію методом найменших квадратів. Для другого методу розроблено спеціальний вид гіперболічної функції, що адекватно відображає характерні особливості фізичних процесів. Показано, що апроксимація гіперболічними функціями, на відміну від інтерполяції сплайнами, дає можливість адекватно описати характер залежностей потокозчеплення від магніторушійної сили навіть при значних похибках числових розрахунків, і при цьому охопити весь необхідний діапазон значень потокозчеплення для всього ряду величин повітряного зазору. Ключові слова: електромагнітний вібраційний привод, математична модель.
Vibrating equipment provides various technological processes, such as transportation, separation, compaction of mixtures. The electromagnetic drive is usually used in vibrating conveyors, feeders and other devices where vibration parameters are automatically controlled. Increasing the energy efficiency of such devices is an important task. The paper examines the influence of the power supply voltage on the energy characteristics of the electromagnetic vibration drive and determines the most effective voltage form. To do this, an analysis of factors affecting the efficiency of the drive was carried out. It was found that one of the factors is the time interval between the maximum current and the minimum value of the air gap, and increasing the efficiency is possible by reducing this interval by forming bipolar rectangular voltage pulses with maximum amplitude, which create narrow sharp pulses of the vibrator coil current. As a result of the numerical modeling of the processes in the drive, it was found that with increasing power, current pulses cause short-term deep saturation of steel, which leads to increased losses and reduced efficiency. Therefore, a zero voltage interval was added between the positive and negative voltage pulses, which limits the peak current values. The simulation of the processes in the vibration drive with the voltage supply of the proposed form was carried out, its energy characteristics were calculated: the dependence of the efficiency on the frequency at different load values, the dependence of the maximum values of the efficiency on the power. It was established that the use of pulsed power supply makes it possible to increase the efficiency of the drive up to 80% in the power range from 0.25 of the nominal value to the nominal one, which is on average 10% more compared to sinusoidal voltage. The dependences of frequency and zero voltage interval optimal values (according to the criterion of maximum efficiency) on power, which can be used in automatic control of the drive, have been obtained. References 10, figures 9, tables 2.
The purpose of the work is to review of electromagnetic vibration drive scope in automated technological lines, analysis of the basic principles of its energy efficiency, review of modern systems of automatic control of frequency and amplitude, analysis of mathematical models and methods of electromagnetic vibration drive research and determination of its promising development directions. The analysis showed that the electromagnetic drive of the vibration equipment has several advantages over other types of vibration drives and has wide prospects for development.The following areas of application of the electromagnetic vibro drive, such as vibration transport and dosing of bulk materials, vibrational separation of bulk substances, vibrational orientation of parts, vibration sealing of mixtures, vibrational proof of flat surfaces, vibration tests, and others are noted. The potentially possible areas of its application are also considered. Three basic principles of energy-efficient electromagnetic vibration drives creation are distinguished, the main of them is the provision of the near-reasonant mode of its operation by automatic control of frequency and amplitude of oscillations. The basic principles of the automatic control systems of frequency and the laws of automatic control of the amplitude of vibration drives are analyzed. The review of mathematical models and methods of calculation of electromechanical processes in vibration electromagnetic drive systems has been carried out. As a result of the analysis, perspective directions of the development of electromagnetic vibration drive are determined. The first direction is the modification of mathematical models related to the necessity of depriving the flow-differentiation procedure, as well as the consideration of energy losses for hysteresis and eddy currents. The second direction is the obtaining of the energy characteristics of the electromagnetic vibration drive system, the optimization of the frequency of oscillations by the criterion of the maximum of energy efficiency and the study of the harmonic composition of the current electromagnetic vibrator in order to determine the possibility of using the phase shift between the harmonic components of the current for automatic adjustment to the near-resonance mode. The third direction is the improvement of the automatic control system, which is to determine the law of controlling the frequency and amplitude of the electromagnetic vibration drive, which provides automatic support for the most energy-efficient mode at a given amplitude of oscillations, as well as the resistance to the influence of higher harmonic components of the signals of current and vibration sensors.
There are a list of complicated tasks need to be solved to increase the working productivity and decrease working cost in modern shipbuilding and ship repair. Good results in solving those problems are shown whether automation with varied robots implementation. The mobile robots able to move and perform given technological operations on different-spaced ferromagnetic surfaces are equipped with own control systems, movers and clamping devices. Usually, reliability and safety of such robots are in direct dependence on designers’ adequate representation of their behavior that is described by mathematical description of separate parts or the robot in the whole to correct control problem solving. The article amply considers the process of the climbing mobile robot clamping electromagnet simulation model building using the improved circle-field method on the example of BR-65/30 clamping electromagnet. The model is built on the basis of interpolated dependences of flux coupling and electromagnetic force on the magnetomotive force and the value of the air gap obtained by numerical calculations of the magnetic field. The dynamic properties of the electromagnet are investigated and a family of its traction characteristics is obtained by the developed model, which can be used for automatic control of the robot clamping device. References 25, figures 5, tables 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.