The present work is devoted to investigation of mechanisms of optical anisotropy of biological tissues polycrystalline networks and laser polarization fluorescence. The model of complex optical anisotropy, which takes into account both linear and circular birefringence, as well as linear and circular dichroism of fibrillar networks of histological sections of women reproductive sphere is proposed. The data of statistical, correlation and fractal processing of coordinate distributions of laser polarization fluorescence is provided. The technique of azimuthally invariant Mueller-matrix mapping of laser polarization fluorescence of protein networks in the tasks of differentiation of benign and malignant tumors of uterus wall is elaborated.
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein fibrils nets of biological tissues a new parameter -complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of biological tissues is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of skin derma of various optical thicknesses appears to be more sensitive and efficient in differentiation of physiological state in comparison with investigations of complex degree of mutual polarization of the corresponding laser images.
Given in this paper are theoretical basics for correlation-phase analysis of laser images inherent to human blood plasma. Also presented are comparative results of measurements aimed at coordinate distributions of the module of complex degree of coherency (CDC) and complex degree of mutual polarization (CDMP) of laser images describing blood plasma of a healthy person as well as of a patient with prostate cancer of the first stage. The authors investigated both values and ranges of changing the statistical (moments of the first to fourth orders), correlation (coefficients of the Gramm-Charlie expansion for autocorrelation functions) and fractal (slopes and dispersion of extremes for logarithmic dependences of power spectra) parameters for coordinate distributions CDC and CDMP. Determined are objective criteria for diagnostics of cancer changes in blood plasma of a patient with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.