Natural Plasmodium vivax malaria infections in man evoke anti-gamete transmission blocking antibodies which influence the infectivity of malaria patients to the vector mosquito. In this study, entomological, immunological and parasitological data obtained through the monitoring of an epidemic of human vivax malaria in Sri Lanka were used in a mathematical simulation to assess the effect of naturally induced transmission blocking immunity on malaria transmission. A mathematical model to describe malaria transmission accounting for transmission blocking immunity was developed from the basic differential equations originally stated by R. Ross and the epidemic was simulated using the available data. An attempt was made to predict the monthly malaria incidence by means of the mathematical simulation, with and without accounting for transmission blocking immunity. A plausible mathematical solution of the epidemic could be obtained when transmission blocking immunity was accounted for, and it was not possible to obtain such a plausible solution in the absence of immunity. Thus, the postulated occurrence of transmission blocking immunity was essential to describe adequately this malaria epidemic, indicating that, at least in epidemic situations, naturally occurring transmission blocking immunity has a controlling influence on malaria incidence.
A mathematical expression was derived to estimate the relative malaria transmission efficiency of an anopheline species with respect to a standard well-characterized species for which all vector parameters can be sufficiently determined. The method is particularly useful in situations where multiple anopheline species contribute to human malaria transmission and requires the estimation of the man-biting rate, the sporozoite rate, and the human malaria incidence. Under stable conditions of vector abundance, the average sporozoite rate in a species during a transmission season would by itself reflect its relative transmission efficiency. This "efficiency" then was used to calculate the "effective human-biting rate"; i.e., the human-biting rate of that species if it were to have ecological properties identical to those of the standard species. The standard well-characterized species then could be used with the effective human-biting rate of all species to quantify transmission, thus overcoming the need to measure vector parameters for all anopheline species contributing to transmission. An expression also was derived to calculate the relative contribution made by each species to malaria transmission. The usefulness of this method was illustrated using entomological and epidemiological data from Kataragama, Sri Lanka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.