Piezoelectric polymers are promising energy materials for wearable and implantable applications for replacing bulky batteries in small and flexible electronics. Therefore, many research studies are focused on understanding the behavior of polymers at a molecular level and designing new polymer-based generators using polyvinylidene fluoride (PVDF). In this work, we investigated the influence of voltage polarity and ambient relative humidity in electrospinning of PVDF for energy-harvesting applications. A multitechnique approach combining microscopy and spectroscopy was used to study the content of the β-phase and piezoelectric properties of PVDF fibers. We shed new light on β-phase crystallization in electrospun PVDF and showed the enhanced piezoelectric response of the PVDF fiber-based generator produced with the negative voltage polarity at a relative humidity of 60%. Above all, we proved that not only crystallinity but also surface chemistry is crucial for improving piezoelectric performance in PVDF fibers. Controlling relative humidity and voltage polarity increased the d 33 piezoelectric coefficient for PVDF fibers by more than three times and allowed us to generate a power density of 0.6 μW·cm –2 from PVDF membranes. This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with β-phase crystallinity reaching up to 74%. The humidity and voltage polarity are critical factors in respect of chemistry of the material on piezoelectricity of PVDF fibers, which establishes a novel route to engineer materials for energy-harvesting and sensing applications.
Using transmittance electron microscopy, fluorescence and polarizing optical microscopy, optical spectroscopy, and fluorescent correlation spectroscopy, it was shown that CdSe/ZnS quantum dots coated with a specifically designed surfactant were readily dispersed in nematic liquid crystal (LC) to form stable colloids. The mixture of an alkyl phosphonate and a dendritic surfactant, where the constituent molecules contain promesogenic units, enabled the formation of thermodynamically stable colloids that were stable for at least 1 year. Stable colloids are formed due to minimization of the distortion of the LC ordering around the quantum dots.
It is of common knowledge that fullerenes form colloids in polar solvents. However, the coagulation via electrolytes and the origin of the negative charge of species are still unexplored. Using a 'radical scavenger' and electrospray ionization spectroscopy (ESI), we proved the formation of ion-radical C 60 À and its (probable) transformation into C 60 2À or (C 60 ) 2 2À.
This study was aimed to reveal the principal colloidal properties of the aqueous dispersion of extremely small primary single-crystalline diamond particles in water. Together with the non-diamond layer, the size of the colloidal species is 2.8 ± 0.6 nm as found via DLS of the initial 5.00 wt/vol% hydrosol. Anionic dyes are readily adsorbed on the colloidal species. This is in line with the positive zeta-potential. The critical coagulation concentrations of the 0.19 wt/vol% nanodiamond hydrosol were determined with a set of inorganic electrolytes and anionic surfactants. The data are in line with the Schulze-Hardy rule for "positive" sols. The fulfillment of the lyotropic (Hofmeister) series was also observed for single-charged anions. The abnormal influence of alkali gives evidence of the acidic nature of the positive charge of the nanodiamond species. Application of acid-base indicators allows estimating the value of the interfacial electrical potential of the nanodiamond particles. Upon dilution from 5.00% to 0.01%, the colloidal system under study exhibits unusual changes. The average size increases ca. ten-fold as determined by DLS. The TEM images support this observation. At the same time, the viscosity drops. This phenomenon was explained in terms of the so-called periodic colloidal structures (colloidal crystals) in concentrated solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.