ERA-Interim is the latest global atmospheric reanalysis produced by the EuropeanCentre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF.
SUMMARY ERA-40 is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions. The observing system changed considerably over this re-analysis period, with assimilable data provided by a succession of satellite-borne instruments from the 1970s onwards, supplemented by increasing numbers of observations from aircraft, ocean-buoys and other surface platforms, but with a declining number of radiosonde ascents since the late 1980s. The observations used in ERA-40 were accumulated from many sources. The first part of this paper describes the data acquisition and the principal changes in data type and coverage over the period. It also describes the data assimilation system used for ERA-40. This benefited from many of the changes introduced into operational forecasting since the mid-1990s, when the systems used for the 15-year ECMWF re-analysis (ERA-15) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis were implemented. Several of the improvements are discussed. General aspects of the production of the analyses are also summarized.A number of results indicative of the overall performance of the data assimilation system, and implicitly of the observing system, are presented and discussed. The comparison of background (short-range) forecasts and analyses with observations, the consistency of the global mass budget, the magnitude of differences between analysis and background fields and the accuracy of medium-range forecasts run from the ERA-40 analyses are illustrated. Several results demonstrate the marked improvement that was made to the observing system for the * Corresponding author: European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, UK. e-mail: adrian.simmons@ecmwf. southern hemisphere in the 1970s, particularly towards the end of the decade. In contrast, the synoptic quality of the analysis for the northern hemisphere is sufficient to provide forecasts that remain skilful well into the medium range for all years. Two particular problems are also examined: excessive precipitation over tropical oceans and a too strong Brewer-Dobson circulation, both of which are pronounced in later years. Several other aspects of the quality of the re-analyses revealed by monitoring and validation studies are summarized. Expectations that the 'second-generation' ERA-40 re-analysis would provide products that are better than those from the firstgeneration ERA-15 and NCEP/NCAR re-analyses are found to have been met in most cases.
The Infrared Atmospheric Sounding Interferometer (IASI) forms the main infrared sounding component of the European Organisation for the Exploitation of Meteorological Satellites's (EUMETSAT's) Meteorological Operation (MetOp)-A satellite (Klaes et al. 2007), which was launched in October 2006. This article presents the results of the first 4 yr of the operational IASI mission. The performance of the instrument is shown to be exceptional in terms of calibration and stability. The quality of the data has allowed the rapid use of the observations in operational numerical weather prediction (NWP) and the development of new products for atmospheric chemistry and climate studies, some of which were unexpected before launch. The assimilation of IASI observations in NWP models provides a significant forecast impact; in most cases the impact has been shown to be at least as large as for any previous instrument. In atmospheric chemistry, global distributions of gases, such as ozone and carbon monoxide, can be produced in near–real time, and short-lived species, such as ammonia or methanol, can be mapped, allowing the identification of new sources. The data have also shown the ability to track the location and chemistry of gaseous plumes and particles associated with volcanic eruptions and fires, providing valuable data for air quality monitoring and aircraft safety. IASI also contributes to the establishment of robust long-term data records of several essential climate variables. The suite of products being developed from IASI continues to expand as the data are investigated, and further impacts are expected from increased use of the data in NWP and climate studies in the coming years. The instrument has set a high standard for future operational hyperspectral infrared sounders and has demonstrated that such instruments have a vital role in the global observing system.
Adaptive bias corrections for satellite radiances need to separate the observation bias from the systematic errors in the background in order to prevent the analysis from drifting towards its own climate. The variational bias correction scheme (VarBC) is a particular adaptive scheme that is embedded inside the assimilation system.VarBC is compared with an offline adaptive and a static bias correction scheme. In simulation, the three schemes are exposed to artificial shifts in the observations and the background. The VarBC scheme can be considered as a good compromise between the static and the offline adaptive schemes. It shows some skill in distinguishing between the background-error and the observation biases when other unbiased observations are available to anchor the system. Tests of VarBC in a real numerical weather prediction (NWP) environment show a significant reduction in the misfit with radiosonde observations (especially in the stratosphere) due to NWP model error. The scheme adapts to an instrument error with only minimal disruption to the analysis.In VarBC, the bias is constrained by the fit to observations -such as radiosondes -that are not bias-corrected to the NWP model. In parts of the atmosphere where no radiosonde observations are available, the radiosonde network still imposes an indirect constraint on the system, which can be enhanced by applying a mask to VarBC.
This article investigates the use of an updated observation-error covariance matrix for the Infrared Atmospheric Sounding Interferometer (IASI) in the European Centre for Medium-Range Weather Forecasts (ECMWF) system. The new observation-error covariance matrix is based on observation-space diagnostics and includes interchannel error correlations, but also assigns significantly altered error standard deviations. The update is investigated in detail in assimilation experiments, including an assessment of the role of error inflation and taking interchannel error correlations into account.The updated observation-error covariance leads to a significant improvement in the use of IASI data, especially in the Tropics and the stratosphere and particularly for humidity and ozone. The benefits are especially strong for short-range forecasts, whereas the impact in the medium range is less pronounced.The study highlights the benefits of taking interchannel error correlations into account, which allows the use of an observation-error covariance for IASI that is overall more consistent with departure statistics. At the same time, the study also demonstrates that error inflation can be used to compensate partially, though not fully, for neglected error correlations. Adjustments such as scaling of the originally diagnosed observation-error estimates are also found to be beneficial when the diagnosed interchannel error correlations are taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.