Open burning of natural gas when using gas equipment in the premises of residential buildings is considered, taking into account the formation of combustion products, depending on the coefficients of excess air. Theoretical and experimental studies of combustion processes are presented. To determine the aerodynamic process in the ventilation duct, theoretical calculations of the dependence of the discharge at the entrance to the ventilation duct from the outside temperature of the atmospheric air were made. Graph-analytic method of evaluating the effectiveness of natural ventilation is carried out.
The article is devoted to the concept of sustainable development of renewable energy in the modern world. The concept of sustainable development of world energy is considered. The analysis of the current state of the fuel and energy complex is given. The principles of development and goals of the future sustainable world energy are given. The essence of sustainable energy development, environmental problems of the leading countries in the production of electricity is being considered.
Introduction. Data on elements of heat supply systems of the Russian Federation (heat sources, heating networks) are given as well as the main energy characteristics. The main problems in the industry are indicated. It is concluded that it is necessary to optimize the operation of heat supply systems in all its links and at all stages of the life cycle.Materials and Methods. For optimal control of thermal power systems, the authors consider it expedient to create a digital information model of each element of the system at each stage of the life cycle, including: - three-dimensional engineering digital terrain model; - three-dimensional engineering digital model of heating networks, taking into account adjacent communications and structures;- operational digital model of the heat supply system on the platform of the geoinformation software complex Zulu21. The technology of data exchange in IFC format between software complexes is given. The necessity of verification of the operational model using the data of field measurements on the physical model of the heat supply system is indicated.Results. The creation of a digital information 6D model of the heat supply system allows you to move to a higher level: intelligent dynamic control of a complex energy system (neurocontrol). The SCADA software package in online mode collects the necessary information (temperature, pressure, coolant flow) from sensors installed at characteristic points of the system. All information is transmitted to Zulu, a software package with built-in support for OPC technology to receive data from a SCADA system. The received data is fed into the ZuluGis software package, which includes the ZuluThermo module, with a loaded digital information model of the heat supply system. The actual thermal and hydraulic modes of the system are calculated in the module. Data on the optimal and actual thermal-hydraulic modes are transmitted to the neurofeedback unit for comparison and management decisionmaking. The decision is transmitted to the appropriate controller to initialize actions to change a parameter.Discussion and Conclusions. A technology for developing a digital information model for elements of a heat supply system at all stages of its life cycle is proposed. The creation of a digital information 6D model of the heat supply system allows you to move to a higher level: intelligent dynamic control of a complex energy system (neurocontrol). The use of intelligent control makes it possible to improve the quality of decisions made, significantly increase the energy efficiency of heat supply systems and the quality of services provided to the end user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.