Abstract. Land use and land cover (LULC) classification has long been an essential topic in Earth Observation research and plays a key role in the sustainable development of agriculture. This study evaluated the accuracy of LULC classification based on an initial clustering step in a heterogeneous agricultural landscape using PlanetScope imagery while checking for variability among their Normalized Difference Vegetation Index (NDVI) temporal signatures. We adopt an object-based image analysis to generate image-objects and then extract statistical information of PlanetScope spectral bands and vegetation indices as input information for classification. The exploratory analysis focused on the double crop class and calculated the distance between NDVI temporal signatures of paired land parcels. We applied an unsupervised clustering technique along with Random Forest algorithm based on multiple tests to classify and analyse gains and losses in accuracies produced by these approaches. Our results showed that the initial clustering method outperformed the non-clustered classification of LULC in overall accuracy measures. The exploratory analysis demonstrated that double crops might present high intra-class variability and diverse crop calendars for neighbour land parcels. The accuracies achieved represent promising opportunities for the sufficiently accurate classification of such areas, and the knowledge of the intra-class variability allows the analyst to infer the temporal dynamics of crop fields. We reinforce that further work could assess other types of classifiers, especially in areas with a large number of crop types and distinct management practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.