This paper examines the coupled hydro-thermo-mechanical behaviour of a fluid-saturated porous sphere with a skeletal fabric that can exhibit either elastic or elasto-plastic mechanical behaviour. Analytical results for the thermo-poro-elastic response of the sphere subjected to transient heat transfer are complemented by computational results for the analogous thermo-poro-elasto-plastic problem. The results presented in the paper examine the influence of the permeability, thermal expansion properties of the pore fluid and the skeleton, and the elasto-plasticity effects of the porous skeleton on the time-dependent pore fluid pressure, displacement and stress within the sphere.
Investigations of multi-physical processes in geomaterials have gained increasing attention due to the ongoing interest in solving complex geoenvironmental problems. This book provides a comprehensive exposition of the classical theory of thermo-poroelasticity, complemented by complete examples to problems in thermo-poromechanics that are used to validate computational results from multi-physics codes used in practice. The methodologies offer an insight into real-life problems related to modern environmental geosciences, including nuclear waste management, geologic sequestration of greenhouse gases to mitigate climate change, and the impact of energy resources recovery on groundwater resources. A strong focus is placed on analytical approaches to benchmark the accuracy of the computational approaches that are ultimately used in real-life problems. The extensive coverage of both theory and applications in thermo-poroelasticity and geomechanics provides a unified presentation of the topics, making this an accessible and invaluable resource for researchers, students or practitioners in the field.
In this paper, we examine the coupled thermoporomechanical behaviour of a fluid-saturated porous medium of infinite extent bounded internally by a fluid-filled cavity. The mechanical behaviour of the porous skeleton can either be Hookean elastic or elasto-plastic, with a constitutive response corresponding to a modified Cam Clay plasticity model. The fluid within the cavity can be subjected simultaneously to a temperature rise and a pressure pulse. The paper presents analytical results for the spherically symmetric thermo-poroelasticity problem and these are used to validate the thermo-poroelasticity module of a computational code. We proceed to examine the thermo-poroelasto-plasticity problem. Results presented in the paper illustrate the interaction between thermal and mechanical phenomena and their influence on the cavity fluid pressure and the skeletal stresses at the cavity boundary. The paper presents solutions that will be of value in benchmarking exercises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.