Mixtures of layered silicates (vermiculite and kaolinite) and carbon fibers were investigated as filler materials for polytetrafluoroethylene. The supramolecular structure and the tribological and mechanical properties of the resulting polymer composite materials were evaluated. The yield strength and compressive strength of the polymer increased by 55% and 60%, respectively, when a mixed filler was used, which was attributed to supramolecular reinforcement of the composites. In addition, the wear resistance increased by 850 times when using vermiculite/kaolinite fillers, which was due to protection of the surface by the formation of hard tribofilms.
Currently, lightweight and high-strength polymer composites can provide weight savings in the automotive and process equipment industries by replacing metal parts. Polytetrafluoroethylene and polymer composites based on it are used in various tribological applications due to their excellent antifriction properties and thermal stability. This article examines the effect of combined fillers (carbon fibers and zeolite) on the mechanical, tribological properties, and structure of polytetrafluoroethylene. It is shown that the introduction of combined fillers into polytetrafluoroethylene retains the tensile strength and elongation at break at a content of 1–5 wt.% of carbon fibers, the compressive stress increased by 53%, and the yield stress increased by 45% relative to the initial polymer. The wear resistance of polymer composites increased 810-fold compared to the initial polytetrafluoroethylene while maintaining a low coefficient of friction. The structural features of polymer composites are characterized by X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy.
The paper presents the results of studying the effect of borpolymer (BP) on the mechanical properties, structure, and thermodynamic parameters of ultra-high molecular weight polyethylene (UHMWPE). Changes in the mechanical characteristics of polymer composites material (PCM) are confirmed and complemented by structural studies. X-ray crystallography (XRC), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and infrared spectroscopy (IR) were used to study the melting point, morphology and composition of the filler, which corresponds to the composition and data of the certificate of the synthesized BP. Tensile and compressive mechanical tests were carried out in accordance with generally accepted standards (ASTM). It is shown that BP is an effective modifier for UHMWPE, contributing to a significant increase in the deformation and strength characteristics of the composite: tensile strength of PCM by 56%, elongation at break by 28% and compressive strength at 10% strain by 65% compared to the initial UHMWPE, due to intensive changes in the supramolecular structure of the matrix. Structural studies revealed that BP does not chemically interact with UHMWPE, but due to its high adhesion to the polymer, it acts as a reinforcing filler. SEM was used to establish the formation of a spherulite supramolecular structure of polymer composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.