We show that the inclusion of a recently found additional term of the spin polarization vector at local equilibrium which is linear in the symmetrized gradients of the velocity field, and the assumption of hadron production at constant temperature restore the quantitative agreement between hydrodynamic model predictions and local polarization measurements in relativistic heavy ion collisions at √ sNN = 200 GeV. The longitudinal component of the spin polarization vector turns out to be very sensitive to the temperature value, with a good fit around 155 MeV. The implications of this finding are discussed.
We derive a general exact form of the phase space distribution function and the thermal expectation values of local operators for the free quantum scalar field at equilibrium with rotation and acceleration in flat space-time without solving field equations in curvilinear coordinates. After factorizing the density operator with group theoretical methods, we obtain the exact form of the phase space distribution function as a formal series in thermal vorticity through an iterative method and we calculate thermal expectation values by means of analytic continuation techniques. We separately discuss the cases of pure rotation and pure acceleration and derive analytic results for the stress-energy tensor of the massless field. The expressions found agree with the exact analytic solutions obtained by solving the field equation in suitable curvilinear coordinates for the two cases at stake and already — or implicitly — known in literature. In order to extract finite values for the pure acceleration case we introduce the concept of analytic distillation of a complex function. For the massless field, the obtained expressions of the currents are polynomials in the acceleration/temperature ratios which vanish at 2π, in full accordance with the Unruh effect.
We derive the general exact forms of the Wigner function, of mean values of conserved currents, of the spin density matrix, of the spin polarization vector and of the distribution function of massless particles for the free Dirac field at global thermodynamic equilibrium with rotation and acceleration, extending our previous results obtained for the scalar field. The solutions are obtained by means of an iterative method and analytic continuation, which lead to formal series in thermal vorticity. In order to obtain finite values, we extend to the fermionic case the method of analytic distillation introduced for bosonic series. The obtained mean values of the stress-energy tensor, vector and axial currents for the massless Dirac field are in agreement with known analytic results in the special cases of pure acceleration and pure rotation. By using this approach, we obtain new expressions of the currents for the more general case of combined rotation and acceleration and, in the pure acceleration case, we demonstrate that they must vanish at the Unruh temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.