Seagrass meadows are among the most important coastal/ marine ecosystems for long-term carbon storage and conditioning of coastal waters. A combined air-water flux of CO2 and CH4 from the seagrass meadows was studied for the first time from Asia’s largest brackish–water lagoon, Chilika, India. Ecosystem-based comparisons were carried out during two hydrologically different conditions of dry and wet seasons in the seagrass dominated southern sector (SS); macrophyte-dominated northern sector (NS); the largely un-vegetated central sector (CS) and the tidally active outer channel (OC) of the lagoon. The mean fluxes of CO2 from SS, NS, CS and OC were 9.8, 146.6, 48.4 and 33.0mM m-2d-1, and that of CH4 were 0.12, 0.11, 0.05 and 0.07mM m-2d-1, respectively. The net emissions (in terms of CO2 equivalents), considering the global warming potential of CO2 (GWP: 1) and CH4 (GWP: 28) from seagrass meadows were over 14 times lower compared to the macrophyte-dominated sector of the lagoon. Contrasting emissivity characteristics of CO2 and CH4 were observed between macrophytes and seagrass, with the former being a persistent source of CO2. It is inferred that although seagrass meadows act as a weak source of CH4, they could be effective sinks of CO2 if land-based pollution sources are minimized.
Anthropogenic activities experienced a pause due to the nationwide lockdown, imposed to contain the rapid spread of COVID-19 in the third week of March 2020. The impacts of suspension of industrial activities, vehicular transport and other businesses for three months (25 March-30 June) on the environmental settings of Chennai, a coastal megacity was assessed. A significant reduction in the key urban air pollutants [PM
2.5
(66.5%), PM
10
(39.5%), NO
2
(94.1%), CO (29%), O
3
(45.3%)] was recorded as an immediate consequence of the reduced anthropogenic activities. Comparison of water quality of an urban river Adyar, between pre-lockdown and lockdown, showed a substantial drop in the dissolved inorganic N (47%) and suspended particulate matter (41%) during the latter period. During the pandemic, biomedical wastes in India showed an overall surge of 17%, which were predominantly plastic. FTIR-ATR analysis confirmed the polymers such as polypropylene (25.4%) and polyester (15.4%) in the personal protective equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.