We report results of an electron-beam-dump search for neutral particles with masses in the range 1 to 15 MeV and lifetimes r between 10 ~1 4 and 10 -10 s. No evidence was found for such an object. We rule out the existence of any 1.8-MeV pseudoscalar boson with r > 8.2 x 10 ~1 5 s and an absorption cross section in matter less than 1 mb per nucleon, and exclude r> 1 x 10 ~1 4 s were its cross section to equal 50 mb per nucleon. In conjunction with measurements of the electron's anomalous magnetic moment, this experiment shows that the narrow positron peaks observed in heavy-ion collisions at the Gessellschaft fur Schwerionenforschung are not due to an elementary pseudoscalar.
The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an acceleratorproduced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.
This Letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum-mechanical oscillations of neutrino flavor with mass splitting |Deltam2| = (2.43+/-0.13) x 10(-3) eV2 (68% C.L.) and mixing angle sin2(2theta) > 0.90 (90% C.L.). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight: namely, neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard-deviation levels, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.