New Jefferson Lab data are presented on the nuclear dependence of the inclusive cross section from (2)H, (3)He, (4)He, (9)Be and (12)C for 0.3 < x < 0.9, Q(2) approximately 3-6 GeV(2). These data represent the first measurement of the EMC effect for (3)He at large x and a significant improvement for (4)He. The data do not support previous A-dependent or density-dependent fits to the EMC effect and suggest that the nuclear dependence of the quark distributions may depend on the local nuclear environment.
We present new measurements of electron scattering from high-momentum nucleons in nuclei. These data allow an improved determination of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data also include the kinematic region where three-nucleon correlations are expected to dominate.
The 3 He and 4 He longitudinal and transverse response functions are determined from an analysis of the world data on quasi-elastic inclusive electron scattering. The corresponding Euclidean response functions are derived and compared to those calculated with Green's function Monte Carlo methods, using realistic interactions and currents. Large contributions associated with two-body currents are found, particularly in the 4 He transverse response, in agreement with data. The contributions of two-body charge and current operators in the 3 He, 4 He, and 6 Li response functions are also studied via sum-rule techniques. A semi-quantitative explanation for the observed systematics in the excess of transverse quasi-elastic strength, as function of mass number and momentum transfer, is provided. Finally, a number of model studies with simplified interactions, currents, and wave functions is carried out to elucidate the role played, in the full calculation, by tensor interactions and correlations. PACS: 21.45.+v, 25.30.Fj
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.