Escherichia coli DsbD transports electrons across the plasma membrane, a pathway that leads to the reduction of protein disulfide bonds. Three secreted thioredoxin-like factors, DsbC, DsbE, and DsbG, reduce protein disulfide bonds whereby an active site C-X-X-C motif is oxidized to generate a disulfide bond. DsbD catalyzes the reduction of the disulfide of DsbC, DsbE, and DsbG but not of the thioredoxin-like oxidant DsbA. The reduction of DsbC, DsbE, and DsbG occurs by transport of electrons from cytoplasmic thioredoxin to the C-terminal thioredoxin-like domain of DsbD (DsbD(C)). The N-terminal domain of DsbD, DsbD(N), acts as a versatile adaptor in electron transport and is capable of forming disulfides with oxidized DsbC, DsbE, or DsbG as well as with reduced DsbD(C). Isolated DsbD(N) is functional in electron transport in vitro. Crystallized DsbD(N) assumes an immunoglobulin-like fold that encompasses two active site cysteines, C103 and C109, forming a disulfide bond between beta-strands. The disulfide of DsbD(N) is shielded from the environment and capped by a phenylalanine (F70). A model is discussed whereby the immunoglobulin fold of DsbD(N) may provide for the discriminating interaction with thioredoxin-like factors, thereby triggering movement of the phenylalanine cap followed by disulfide rearrangement.
Mycobacterium tuberculosis, a Gram-positive bacterium, encodes a secreted Dsb-like protein annotated as Mtb DsbE (Rv2878c, also known as MPT53). Because Dsb proteins in Escherichia coli and other bacteria seem to catalyze proper folding during protein secretion and because folding of secreted proteins is thought to be coupled to disulfide oxidoreduction, the function of Mtb DsbE may be to ensure that secreted proteins are in their correctly folded states. We have determined the crystal structure of Mtb DsbE to 1.1 Å resolution, which reveals a thioredoxin-like domain with a typical CXXC active site. These cysteines are in their reduced state. Biochemical characterization of Mtb DsbE reveals that this disulfide oxidoreductase is an oxidant, unlike Gram-negative bacteria DsbE proteins, which have been shown to be weak reductants. In addition, the pK a value of the active site, solvent-exposed cysteine is ϳ2 pH units lower than that of Gram-negative DsbE homologs. Finally, the reduced form of Mtb DsbE is more stable than the oxidized form, and Mtb DsbE is able to oxidatively fold hirudin. Structural and biochemical analysis implies that Mtb DsbE functions differently from Gramnegative DsbE homologs, and we discuss its possible functional role in the bacterium.
MPT63 is a small, major secreted protein of unknown function from Mycobacterium tuberculosis that has been shown to have immunogenic properties and has been implicated in virulence. A BLAST search identified that MPT63 has homologs only in other mycobacteria, and is therefore mycobacteria specific. As MPT63 is a secreted protein, mycobacteria specific, and implicated in virulence, MPT63 is an attractive drug target against the deadliest infectious disease, tuberculosis (TB). As part of the TB Structural Genomics Consortium, the X-ray crystal structure of MPT63 was determined to 1.5-Ångstrom resolution with the hope of yielding functional information about MPT63. The structure of MPT63 is an antiparallel -sandwich immunoglobulin-like fold, with the unusual feature of the first -strand of the protein forming a parallel addition to the small antiparallel -sheet. MPT63 has weak structural similarity to many proteins with immunoglobulin folds, in particular, Homo sapiens 2-adaptin, bovine arrestin, and Yersinia pseudotuberculosis invasin. Although the structure of MPT63 gives no conclusive evidence to its function, structural similarity suggests that MPT63 could be involved in cell-host interactions to facilitate endocytosis/phagocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.