From a Lie algebra g satisfying Z(g) = 0 and Λ 2 (g) g = 0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L = g × K in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K with char K = 0. If moreover, [g, g] = g, then we describe also all Lie bialgebra structures on extensions L = g × K n . In interesting cases we characterize the Lie algebra of biderivations.
We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way.We exhibit applications for f n , the free 2-step nilpotent Lie algebra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.