Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.
This study demonstrates that the DIN test has excellent test characteristics when screening for moderate hearing loss (or more) in an elderly population. It is less suited to screen for mild hearing loss. The test is easy to complete and should be suitable for implementation as an automated self-test in hearing screening programs. Ultimately, when combined with active counseling, hearing screening could lead to higher hearing aid coverage in the hearing impaired elderly.
Previous research has shown that genes play a substantial role in determining a person’s susceptibility to age-related hearing impairment. The existing studies on this subject have different results, which may be caused by difficulties in determining the phenotype or the limited number of participants involved. Here, we have gathered the largest sample to date (discovery n = 9,675; replication n = 10,963; validation n = 356,141), and examined phenotypes that represented low/mid and high frequency hearing loss on the pure tone audiogram. We identified 7 loci that were either replicated and/or validated, of which 5 loci are novel in hearing. Especially the ILDR1 gene is a high profile candidate, as it contains our top SNP, is a known hearing loss gene, has been linked to age-related hearing impairment before, and in addition is preferentially expressed within hair cells of the inner ear. By verifying all previously published SNPs, we can present a paper that combines all new and existing findings to date, giving a complete overview of the genetic architecture of age-related hearing impairment. This is of importance as age-related hearing impairment is highly prevalent in our ageing society and represents a large socio-economic burden.
Background: Growth hormone-secreting pituitary adenomas (somatotroph adenoma) predominantly express somatostatin receptors (SSTRs) subtypes 2 and 5. Higher SSTR2 expression on somatotroph adenomas results in a better response to somatostatin analogues (SSAs), which preferentially bind, but also downregulate, SSTR2. The effect of the combined treatment with SSAs and the GH receptor antagonist pegvisomant (PEGV) on SSTR expression in somatotroph adenomas is currently unknown. Aim of the Study: To assess SSTR2 and SSTR5 expression in three groups of somatotroph adenomas: drug-naive, treated with long-acting (LA) SSA monotherapy, or LA-SSA/PEGV combination therapy before surgery. Additionally, we evaluated the required PEGV dose to achieve insulin-like growth factor I (IGF-I) normalization in relation to the SSTR expression. Materials and Methods: At our Pituitary Center Rotterdam, we selected acromegalic patients who underwent transsphenoidal neurosurgery. All patients were eventually treated with LA-SSA/PEGV combination therapy during their medical history. SSTR2 and SSTR5 expression in somatotroph adenoma tissues was determined using immunohistochemistry. Results: Out of 39 somatotroph adenoma tissue samples, 23 were drug-naive, 9 received pretreatment with LA-SSA and 7 LA-SSA/PEGV combined treatment. SSTR2 expression was significantly higher in treatment-naive compared to combined treatment somatotroph adenomas (p = 0.048), while SSTR5 expression did not differ. Noteworthy, SSTR2 expression in naive somatotroph adenoma tissues was inversely correlated with the required PEGV dose to achieve IGF-I normalization during postsurgical medical treatment (ρ = -0.538, p = 0.024). Conclusion: In our specific cohort, the SSTR2 expression was lower in patients pretreated with LA-SSA/PEGV compared to the drug-naive acromegalic patients. Additionally, the SSTR2 expression in treatment-naive somatotroph adenoma tissues was inversely correlated with the required PEGV dose to achieve IGF-I normalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.