Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.
Purpose – Fibre content can influence the intensity of odour that develops within clothing fabrics. However, little is known about how effective laundering is at removing malodours in clothing which differ by fibre type. The purpose of this paper is to investigate whether a selected cotton fabric differed in odour intensity following multiple wear and wash cycles compared to a polyester fabric. Design/methodology/approach – Eight (male and female) participants wore bisymmetrical cotton/polyester t-shirts during 20 exercise sessions over a ten-week trial period. Odour was evaluated via a sensory panel, bacterial populations were counted and selected odorous volatile organic compounds were measured with comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry detection. Analysis occurred both before and after the final (20th) wash cycle. Findings – Findings showed that laundering was effective in reducing overall odour intensity (p0.001) and bacterial populations (p0.001) in both cotton and polyester fabrics. Odour was most intense on polyester fabrics following wear, not just before, but also after washing (p0.001); although, no differences in bacterial counts were found between fibre types (p>0.05). Chemical analysis found C4-C8 chained carboxylic acids on both types of unwashed fabrics, although they were more prevalent on polyester. Originality/value – The findings suggest that the build-up of odour in polyester fabrics may be cumulative as important odorants such as the carboxylic acids were not as effectively removed from polyester compared to cotton.
Urine is a popular biofluid for metabolomics studies due to its simple, non-invasive collection and its availability in large quantities, permitting frequent sampling, replicate analyses, and sample banking. The biggest disadvantage with using urine is that it exhibits significant variability in concentration and composition within an individual over relatively short periods of time (arising from various external factors and internal processes regulating the body’s water and solute content). In treating the data from urinary metabolomics studies, one must account for the natural variability of urine concentrations to avoid erroneous data interpretation. Amongst various proposed approaches to account for broadly varying urine sample concentrations, normalization to creatinine has been widely accepted and is most commonly used. MS total useful signal (MSTUS) is another normalization method that has been recently reported for mass spectrometry (MS)-based metabolomics studies. Herein, we explored total useful peak area (TUPA), a modification of MSTUS that is applicable to GC×GC-TOFMS (and data from other separations platforms), for sample normalization in urinary metabolomics studies. Performance of TUPA was compared to the two most common normalization approaches, creatinine adjustment and Total Peak Area (TPA) normalization. Each normalized dataset was evaluated using Principal Component Analysis (PCA). The results showed that TUPA outperformed alternative normalization methods to overcome urine concentration variability. Results also conclusively demonstrate the risks in normalizing data to creatinine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.