One of the major environmental factors limiting plant productivity is lack of water. This is especially true for the major cereals maize, rice, and wheat, which demonstrate a range of susceptibility to moisture deficit. Although conventional breeding and marker-assisted selection are being used to develop varieties more tolerant to water stress, these methods are time and resource consuming and germplasm dependent. Genetic engineering is attractive because of its potential to improve abiotic stress tolerance more rapidly. Transcription factors have been shown to produce multiple phenotypic alterations, many of which are involved in stress responses. DREB1A, a transcription factor that recognizes dehydration response elements, has been shown in Arabidopsis thaliana to play a crucial role in promoting the expression of drought-tolerance genes. In our efforts to enhance drought tolerance in wheat, the A. thaliana DREB1A gene was placed under control of a stress-inducible promoter from the rd29A gene and transferred via biolistic transformation into bread wheat. Plants expressing the DREB1A gene demonstrated substantial resistance to water stress in comparison with checks under experimental greenhouse conditions, manifested by a 10-day delay in wilting when water was withheld.
Yield potential can be expressed as a product of light interception, radiation use efficiency (RUE), and the partitioning of biomass to grain yield, or harvest index (HI). Traits related to early or late light interception have not been shown to be associated with genetic improvement of spring wheat yield in favourable environments. It is, however, well established that yield improvement is largely a result of increased HI, although the most recent studies comparing genetic progress in HI over time in spring wheat indicate that it has not made any additional progress since the mid 1980s. These observations suggest that future genetic progress in yield will most likely be achieved by focusing on constraints to RUE. Considering the possibility that RUE may be influenced indirectly by sink limitation, it is apparent that biomass may be increased by increasing grain number, for example. Experiments with high yielding spring wheat lines containing the alien translocation 7DL.7Ag showed increased grains m -2 (15%), yield (12%), and biomass (9%) compared with controls. The translocation was also associated with a larger investment in spike mass at anthesis (15%), more grains/spike (10%), and increased flag-leaf photosynthetic rate during grain-filling (20%). The data suggest that increased biomass in 7DL.7Ag lines was due to significantly increased RUE post-anthesis, as a result of a larger kernel number (sink) that increased the demand for photosynthesis during grain-filling. The hypothesis that increased photosynthesis and RUE may respond directly to a larger number of grains/spike was tested experimentally by imposing a light treatment during boot stage. The treatment was associated with a small increase (5%) in the proportion of biomass invested in spike mass at anthesis, reflected by on average three extra grains/spike at maturity. The treatment was associated with 25% more yield and 22% more biomass than controls, while carbon assimilation rate measured on flag-leaves during grainfilling was 10% higher than controls. The results suggest that RUE can be increased indirectly by increasing sink strength and that the current yield limiting process in spring wheat is the determination of kernel number. Experimental data are presented on how spike fertility may be increased through breeding, for example by introgression of the multi-ovary trait to increase grain number per spikelet. In addition, results of analysis of the physiological bases of genotype × year interaction in high yield environments are presented in the context of how such information can provide a focus for genetic studies of sink limitation.
The efficiency of wheat biolistic transformation systems strongly depends on the bombardment parameters, the condition of the donor plant, and the plant genotype chosen for the transformation process. This paper analyzes the transformation efficiency of the 129 wheat sister lines generically called 'Bobwhite', originally obtained from the cross 'Aurora'//'Kalyan'/'Bluebird 3'/'Woodpecker'. A number of factors influencing the transformation were examined, such as the ability to produce embryogenic callus, regeneration in selection medium, and overall transformation performance. Of the 129 genotypes evaluated, eight demonstrated transformation efficiencies above 60% (60 independent transgenic events per 100 immature embryos bombarded). Among the eight genotypes identified, we studied agronomic characteristics such as earliness to identify the most adaptable line(s) for different lab conditions. 'Bobwhite' SH 98 26 was identified as a super-transformable wheat line.
SummaryAdvances in the genetic transformation of cereals have improved the prospects of using biotechnology for plant improvement, and a toolbox of promoters with defined specificities would be a valuable resource in controlling the expression of transgenes in desired tissues for both plant improvement and molecular farming. A number of promoters have been isolated from the important cereals (wheat, barley, rice and maize), and these promoters have been tested mostly in homologous cereal systems and, to a lesser extent, in heterologous cereal systems. The use of these promoters across the important cereals would add value to the utility of each promoter. In addition, promoters with less sequence homology, but with similar specificities, will be crucial in avoiding homology-based gene silencing when expressing more than one transgene in the same tissue. We have tested wheat and barley promoters in transgenic barley and wheat to determine whether their specificity is shared across these two species. The barley bifunctional α -amylase/subtilisin inhibitor ( Isa ) promoter, specific to the pericarp in barley, failed to show any activity in wheat, whereas the wheat early-maturing ( Em ) promoter showed similar activity in wheat and we have demonstrated that the Isa and Em promoters can be used as strong promoters to direct transgenes in specific tissues of barley and wheat grain. Differential promoter activity across cereals expands and adds value to a promoter toolbox for utility in plant biotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.