Heat treatments are usual means for modifying alloy microstructures and, consequently, to control mechanical properties. The aim of this work was to find suitable processes for improving the shape memory effect (SME) of Fe–Mn–Si-based alloys. In particular, we studied mechanisms that affect the plastic deformation of the austenite phase. A Fe–15Mn–5Si–9Cr–5Ni alloy was deformed by rolling at different temperatures and subsequently annealed at recovery- and recrystallization-temperature. The mechanical properties of the material after processing were evaluated by performing tension and flexure tests. The SME of room temperature deformed specimens was measured after heating them to 550°C for shape recovery. We found that the material rolled at 800°C followed by an annealing treatment at 650°C recovers nearly 95 % of a 3 % deformation. In this thermo-mechanical condition, the material has a yield stress of 450 MPa and an ultimate tensile strength of 880 MPa, corresponding to a total elongation of about 16 %. Optical and electron microscopy observations show that the matrix annealed at high temperature contains a low density of defects. As a consequence, there are fewer nucleation sites for martensite and the associated SME is low. On the other hand, annealing at intermediate temperatures (around 650°C) produces a favorable structure containing a large density of stacking faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.