The influenza virus polymerase transcribes or replicates the segmented RNA genome (viral RNA) into viral messenger RNA or full-length copies. To initiate RNA synthesis, the polymerase binds to the conserved 3' and 5' extremities of the viral RNA. Here we present the crystal structure of the heterotrimeric bat influenza A polymerase, comprising subunits PA, PB1 and PB2, bound to its viral RNA promoter. PB1 contains a canonical RNA polymerase fold that is stabilized by large interfaces with PA and PB2. The PA endonuclease and the PB2 cap-binding domain, involved in transcription by cap-snatching, form protrusions facing each other across a solvent channel. The 5' extremity of the promoter folds into a compact hook that is bound in a pocket formed by PB1 and PA close to the polymerase active site. This structure lays the basis for an atomic-level mechanistic understanding of the many functions of influenza polymerase, and opens new opportunities for anti-influenza drug design.
Influenza virus polymerase uses a capped primer, derived by 'cap-snatching' from host pre-messenger RNA, to transcribe its RNA genome into mRNA and a stuttering mechanism to generate the poly(A) tail. By contrast, genome replication is unprimed and generates exact full-length copies of the template. Here we use crystal structures of bat influenza A and human influenza B polymerases (FluA and FluB), bound to the viral RNA promoter, to give mechanistic insight into these distinct processes. In the FluA structure, a loop analogous to the priming loop of flavivirus polymerases suggests that influenza could initiate unprimed template replication by a similar mechanism. Comparing the FluA and FluB structures suggests that cap-snatching involves in situ rotation of the PB2 cap-binding domain to direct the capped primer first towards the endonuclease and then into the polymerase active site. The polymerase probably undergoes considerable conformational changes to convert the observed pre-initiation state into the active initiation and elongation states.
Influenza polymerase uses unique mechanisms to synthesize capped and polyadenylated mRNAs from the genomic viral RNA (vRNA) template, which is packaged inside ribonucleoprotein particles (vRNPs). Here, we visualize by cryoelectron microscopy the conformational dynamics of the polymerase during the complete transcription cycle from pre-initiation to termination, focusing on the template trajectory. After exiting the active site cavity, the template 3 0 extremity rebinds into a specific site on the polymerase surface. Here, it remains sequestered during all subsequent transcription steps, forcing the template to loop out as it further translocates. At termination, the strained connection between the bound template 5 0 end and the active site results in polyadenylation by stuttering at uridine 17. Upon product dissociation, further conformational changes release the trapped template, allowing recycling back into the pre-initiation state. Influenza polymerase thus performs transcription while tightly binding to and protecting both template ends, allowing efficient production of multiple mRNAs from a single vRNP. ll
The heterotrimeric influenza polymerase (FluPol), comprising subunits PA, PB1 and PB2, binds to the conserved 5' and 3' termini (the 'promoter') of each of the eight single-stranded viral RNA (vRNA) genome segments and performs both transcription and replication of vRNA in the infected cell nucleus. To transcribe viral mRNAs, FluPol associates with cellular RNA polymerase II (Pol II), which enables it to take 5'-capped primers from nascent Pol II transcripts. Here we present a co-crystal structure of bat influenza A polymerase bound to a Pol II C-terminal domain (CTD) peptide mimic, which shows two distinct phosphoserine-5 (SeP5)-binding sites in the polymerase PA subunit, accommodating four CTD heptad repeats overall. Mutagenesis of the SeP5-contacting basic residues (PA K289, R454, K635 and R638) weakens CTD repeat binding in vitro without affecting the intrinsic cap-primed (transcription) or unprimed (replication) RNA synthesis activity of recombinant polymerase, whereas in cell-based minigenome assays the same mutations substantially reduce overall polymerase activity. Only recombinant viruses with a single mutation in one of the SeP5-binding sites can be rescued, but these viruses are severely attenuated and genetically unstable. Several previously described mutants that modulate virulence can be rationalized by our results, including a second site mutation (PA(C453R)) that enables the highly attenuated mutant virus (PA(R638A)) to revert to near wild-type infectivity. We conclude that direct binding of FluPol to the SeP5 Pol II CTD is fine-tuned to allow efficient viral transcription and propose that the CTD-binding site on FluPol could be targeted for antiviral drug development.
SummaryInfluenza virus polymerase transcribes or replicates the segmented RNA genome (vRNA) into respectively viral mRNA or full-length copies and initiates RNA synthesis by binding the conserved 3′ and 5′ vRNA ends (the promoter). In recent structures of promoter-bound polymerase, the cap-binding and endonuclease domains are configured for cap snatching, which generates capped transcription primers. Here, we present a FluB polymerase structure with a bound complementary cRNA 5′ end that exhibits a major rearrangement of the subdomains within the C-terminal two-thirds of PB2 (PB2-C). Notably, the PB2 nuclear localization signal (NLS)-containing domain translocates ∼90 Å to bind to the endonuclease domain. FluA PB2-C alone and RNA-free FluC polymerase are similarly arranged. Biophysical and cap-dependent endonuclease assays show that in solution the polymerase explores different conformational distributions depending on which RNA is bound. The inherent flexibility of the polymerase allows it to adopt alternative conformations that are likely important during polymerase maturation into active progeny RNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.