One of the biggest challenges to achieve the goal of producing fusion energy in tokamak devices is the necessity of avoiding disruptions of the plasma current due to instabilities. The Disruption Event Characterization and Forecasting (DECAF) framework has been developed in this purpose, integrating physics models of many causal events that can lead to a disruption. Two different machine learning approaches are proposed to improve the ideal magnetohydrodynamic (MHD) no-wall limit component of the kinetic stability model included in DECAF. First, a random forest regressor (RFR), was adopted to reproduce the DCON computed change in plasma potential energy without wall effects, δW n=1 no−wall , for a large database of equilibria from the National Spherical Torus Experiment (NSTX). This tree-based method provides an analysis of the contribution of each input feature, giving an insight into the underlying physics phenomena. Secondly, a fully-connected neural network has been trained on sets of calculations with the DCON code, to get an improved closed form equation of the no-wall β limit as a function of the relevant plasma parameters indicated by the RFR. The neural network has been guided by physics theory of ideal MHD in its extension outside the domain of the NSTX experimental data. The estimated value of β n=1 N,no−wall has been incorporated into the DECAF kinetic stability model and tested against a set of experimentally stable and unstable discharges. Moreover, the neural network results were used to simulate a real-time stability assessment using only quantities available in real-time. Finally, the portability of the model was investigated, showing encouraging results by testing the NSTX-trained algorithm on the Mega Ampere Spherical Tokamak (MAST).
Recent progress in the disruption event characterization and forecasting framework has shown that machine learning guided by physics theory can be easily implemented as a supporting tool for fast computations of ideal stability properties of spherical tokamak plasmas. In order to extend that idea, a customized random forest (RF) classifier that takes into account imbalances in the training data is hereby employed to predict resistive wall mode (RWM) stability for a set of high beta discharges from the NSTX spherical tokamak. More specifically, with this approach each tree in the forest is trained on samples that are balanced via a user-defined over/under-sampler. The proposed approach outperforms classical cost-sensitive methods for the problem at hand, in particular when used in conjunction with a random under-sampler, while also resulting in a threefold reduction in the training time. In order to further understand the model’s decisions, a diverse set of counterfactual explanations based on determinantal point processes (DPP) is generated and evaluated. Via the use of DPP, the underlying RF model infers that the presence of hypothetical magnetohydrodynamic activity would have prevented the RWM from concurrently going unstable, which is a counterfactual that is indeed expected by prior physics knowledge. Given that this result emerges from the data-driven RF classifier and the use of counterfactuals without hand-crafted embedding of prior physics intuition, it motivates the usage of counterfactuals to simulate real-time control by generating the β N levels that would have kept the RWM stable for a set of unstable discharges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.