Abstract. The potential for using coal‐derived humic substances to improve the available water holding capacity (AWC) and aggregate stability of typical Mediterranean soils was evaluated in the laboratory using an agricultural surface (0–20 cm) soil from each of three regions of Italy, (Sicily, Tuscany and Venetia) and five rates of humic acids (HA), 0,0.05,0.10,0.50 and 1.00 g/kg. There were significant (P < 0.05) differences between the field capacity (FC), permanent wilting point (PWP), and available water capacity (AWC) values of the controls and those treated with 0.05 g/kg of the HA. Beyond this rate, differences in these properties were not significant. At the 1.00 g/kg HA rate, the relative improvements in AWC over the three controls were 30%, 10% and 26%. Low rates (0.05 to 0.10 g/kg) of HA were also needed to obtain a 40 to 120% improvement in aggregate stability of these soils relative to the controls. These results indicate that the addition of highly humified organic matter such as coal‐derived humic substances can improve the structural and water retention properties of degraded arable soils. However, since there is not yet any direct evidence that these humic materials can ameliorate soils under field conditions, field studies will be needed to validate these results.
In a long-term (one year) experiment, a sandy Podzol and a silty-loamy Loess soil were treated with labile (polysaccharides, AG) and stable (mature compost, CMP, and two humic acids from compost, HAC, and lignite, HAL) organic matter and the organic carbon (OC) lost by mineralization was periodically evaluated. The stable materials alone induced a significant reduction of OC losses in Podzol (CMP < HAL < HAC ≤ Control), whereas the same treatments, except for CMP, produced an OC loss larger than control in Loess. This was attributed to the diverse textural and physical status of the two soils. The added stable organic matter became protected in the Podzol soil within the aggregates formed by the interaction with the coarse inorganic phase, while it was more easily decomposed in the Loess soils due to the strength of the native humic-clay complexes. In both soils, when the stable organic materials were mixed with polysaccharides (AG), the OC losses from this labile fraction were significantly reduced, being CMP more OC sequestering than HAC and HAL, in the order. These results confirmed that labile organic matter in soils can be protected from biodegradation by repartition into the hydrophobic domains of the stable, humified organic matter. This study suggests that mature compost and humic acids may usefully integrate management practices aimed to sequester organic carbon in soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.