Karyotyping of dog chromosomes is a difficult task owing to the high diploid number of chromosomes (2n = 78) and the similar morphology of autosomes, all of which are acrocentrics. In this report 22 of the 39 G-banded chromosome pairs and their corresponding ideograms have been standardized. The ideogram comprises altogether 235 bands. The need for the introduction of molecular techniques such as chromosome painting and physical mapping of genetic markers for the identification of small acrocentrics is discussed.
The purpose of this study was to determine the nucleotide sequence of canine 5S rRNA and use this information to develop a molecular probe to assign the gene locus to chromosomes of the dog and three other related canid species using fluorescence in situ hybridization. The nucleotide sequence of canine liver 5S rRNA is 120 base pairs long and identical to the 5S rRNA nucleotide sequence of all other mammalian species investigated so far. A single 5S rRNA gene cluster was localized pericentromerically on chromosomes of four canid species: dog 4q1.3, red fox 4q1.3, blue fox 3q1.3 and Chinese raccoon dog 8q1.3. Chromosome arms carrying the 5S rRNA gene cluster showed striking similarities in their QFQ banding patterns, suggesting high conservation of these chromosome arms among the four species studied. The chromosomal assignments of 5S rRNA genes are among the first gene mapping results for the blue fox and the Chinese raccoon dog, and are in accordance with published data on comparative chromosome maps from human, dog, red fox, blue fox and raccoon dogs.
A population of Baudet du Poitou donkeys was genetically characterized using microsatellites. The results were used to verify the pedigrees and to estimate the genetic variability. It could be confirmed that a equine parentage test kit works well for donkeys and that by using 13 microsatellites more than 99% of wrong pedigree informations would be detected. The genetic variability was comparable to a representative group of Baudet du Poitou donkeys in France.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.