Nowadays, data collection is a key process in the study of electrical power networks when searching for harmonics and a lack of balance among phases. In this context, the lack of data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, and current in each phase and power factor) adversely affects any time series study performed. When this occurs, a data imputation process must be accomplished in order to substitute the data that is missing for estimated values. This paper presents a novel missing data imputation method based on multivariate adaptive regression splines (MARS) and compares it with the well-known technique called multivariate imputation by chained equations (MICE). The results obtained demonstrate how the proposed method outperforms the MICE algorithm.
RESUMENSe ha llevado a cabo un estudio de la concentración de gas radón en la Escuela Universitaria de Arquitectura Técnica de la Universidade da Coruña. Para ello se ha analizado la ubicación del edificio, el terreno y los materiales de construcción empleados. A continuación se han efectuado mediciones para determinar la concentración de gas radón, empleando dos técnicas: medida in situ con un detector de cámara de ionización (corto espacio de tiempo), y medida con detectores de trazas (largo espacio de tiempo). En función de los resultados obtenidos, y teniendo en cuenta la legislación vigente (BOE, Instrucción IS-33, de 21 de diciembre de 2011), se han efectuado medidas correctoras (sellado de grietas, instalación de un sistema mecánico de ventilación) con el objetivo de mitigar las elevadas concentraciones de radón. Tras la ejecución de dichas medidas correctoras se efectuaron nuevas mediciones, verificándose la mitigación de radón en valores que oscilan entre el 50 y el 90 %.Palabras clave: radón; cámara de ionización; detectores de trazas; ventilación mecánica; mitigación.
ABSTRACT
All fields of science have advanced and still advance significantly. One of the facts that contributes positively is the synergy between areas. In this case, the present research shows the Electromyogram (EMG) modeling of patients undergoing to anesthesia during surgery. With the aim of predicting the patient EMG signal, a model that allows to know its performance from the Bispectral Index (BIS) and the Propofol infusion rate has been developed. The proposal has been achieved by using clustering combined with regression techniques and using a real dataset obtained from patients undergoing to anesthesia during surgeries. Finally, the created model has been tested with very satisfactory results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.